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5 Finitely non-standard models of
Robinson arithmetic

Introduction

To the best of my knowledge, there is no systematic study of finitely non-
standard models of Robinson arithmetic—that is, of models of Robinson

arithmetic with a non-empty finite set of non-standard numbers. This

is a modest attempt at such a systematic study. My motivation for this
study was to set the stage for its follow-up study (Ch. 6) of finitely non-
standard models of weak extensions of Robinson arithmetic—a study
that in turn was motivated by me expecting its applicability in Ch. 7.
(My expectations of applicability were met: in Ch. 7 all counterexamples
to inductiveness are finitely non-standard models, and when construct-
ing these counterexamples I was helped by the results in this chapter
and the next.)

I claim no novelty—nor do I claim that I present nothing novel. Perhaps
any novelty mainly lies in the systematic exposition. Perhaps there is
some value in that all methods used are simple—I think readers with,
say, a proper undergraduate-level education in logic should have few
problems following along.

While I have found no systematic study, the existing literature has ex-
amples of finitely non-standard models of Robinson arithmetic.

— In their classical textbook, Boolos and Jeffrey (1980) present a non-
standard model of Robinson arithmetic as a hint to exercise 14.2. That
non-standard model has two non-standard numbers and is thus finitely
non-standard.

— I have seen a number of examples of models of Robinson arithmetic
with one or two non-standard numbers. These models are thus finitely
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non-standard. Most likely Robinson himself presented a finitely non-
standard model of Robinson arithmetic in his address at the 1950
International Congress of Mathematicians.” The abstract for that ad-
dress includes the (presumably) original axiomatization of Robinson
arithmetic, and the following parenthetical:

(On the other hand, many simple formulas, such as 0+a = a
and a < a, are not provable from the given axioms.)
[Robinson (1950)]

One may easily show that 04+a = a is not provable from (Robinson’s
original axiomatization of) Robinson arithmetic by exhibiting a suit-
able countermodel with two non-standard numbers. (Readers might
find proving thus to be a suitable warm-up for the material in this
chapter.)

We recall Robinson arithmetic.

Definitions 2.1.1 (restated)

(a) Thelanguage £ of Robinson arithmetic is the £L®-reduct (0, S, +, X).

(b) The LR-theory Robinson arithmetic, notation ‘Q’, is axiomatized
by the respective universal closures of:

Q1) Sz #0

Q4) z+0==z

(
(
(Q3) z=0VvIyz =Sy
(
(Q5) z+Sy=S(z+vy)

No accompanying paper seem to have been published—at least it seems so according
to the answers to a MathOverflow question (Brox, 2010) regarding exactly this. In
any case, Robinson arithmetic is introduced and studied starting with section 3 of
paper II in the monograph Undecidable Theories (Tarski, Mostwoski, Robinson, 1953,
p. 51). Presumably what Robinson presented in his address was used in that paper.

t Another suitable warm-up exercise might be to prove that there is—up to

isomorphism—exactly countably many distinct models of Robinson arithmetic with
a single non-standard number c. (Hint: There is one such model—of Robinson’s
original axiomatization—for each possible value of 0 X ¢, which may be set to any
standard number, or to the single non-standard number c¢.) When proof-reading, I
found proving thus to be a suitable reminder of this chapter’s ideas.
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(Q6) zx0=0
(Q7) zxSy=zxy+z.

For reasons given in € 5.1.14, we also work with fragments of Robinson
arithmetic.

Definitions [fragments of Robinson arithmetic]
(a) The language LP is the £L%-reduct (0, S).
(b) The language L7 is the £L2-reduct (0, S, +).

(c) The progression fragment (of Robinson arithmetic), notation ‘QF’,
is the LP-theory axiomatized by (Q1)—(Q3).

(d) The addition fragment (of Robinson arithmetic), notation ‘Q*’, is
the £*-theory axiomatized by (Q1)-(Q5).

Remark My choice of the terminology ‘progression fragment’ is in-
spired by the observation made by Quine—made independently by oth-
ers as well, I presume—that any progression will do as the set of natural
numbers:

The subtle point is that any progression will serve as a version
of number so long and only so long as we stick to one and
the same progression. Arithmetic is, in this sense, all there is
to number: there is no saying absolutely what the numbers
are; there is only arithmetic.
[Quine, W.V (1968, p. 198)]

(Of course, the progression fragment of Robinson arithmetic admits of
many models that are not the natural number progression—but then
so does true first-order arithmetic. I think ‘the progression fragment’
makes for decent terminology—and after all, it is only terminology.)

Definition [finitely non-standard models] For L = LP, L = L*
and L = L9, an L-model is finitely non-standard if and only if:

— its domain is N 4+ A for some finite non-empty set A of non-standard
numbers disjoint from N; and
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— restricting the domain to N is possible and this restriction is the stan-
dard L-model.

Abbreviation ‘f.n.s.’ abbreviates ‘finitely non-standard’.

Convention When I use ‘f.n.s. model’—without specifying a language—
what I mean is an f.n.s. model of any of the three languages £P, £t and
L2, to the respective extent a model of each language makes sense in
the given context. This convention also applies, mutatis mutandis, in
similar cases where no language is specified.

Remarks

(a) We could of course generalize ‘— is an f.n.s. model’ by accounting
for isomorphic models. There is no need to do this for present
purposes.

(b) Note that we do not require an f.n.s. £L2-model to be a model of
Q. Similarly, an f.n.s. £P-model need not be a model of QP, and an
f.n.s. £L¥-model need not be a model of Q™.

Main results The main results of this chapter are Facts 5.2.2, 5.4.6
and 5.5.14." Together, these roughly say that for each f.n.s. £2-model
of Q:

— S is a permutation of the set of non-standard numbers. As is well-
known, each permutation of a finite set has a unique “decomposition”
into “cycles” on “disjoint orbits”. In § 5.4, I define the preceding scare-
quoted notions. I call the unique decomposition the (successor) cycle
structure (of the model) and I call the cycles on disjoint orbits the
(successor) cycles (of the model). (While this terminology may be
non-standard, the definitions should not differ from how these notions
are usually defined.)

— The restriction of + to

{{a,n) : a non-standard, n standard}

*

Facts 5.4.24 and 5.5.36 are alternative formulations of Facts 5.4.6 and 5.5.14, re-
spectively. These alternative formulations are a bit more informative and for some
purposes more useful.
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is “tame”, in the following sense. This restriction is determined already
by the cycle structure of the model—for each non-standard a and for
each standard n we have

a + n = the result of starting at a and taking n steps in its cycle.

The restriction of + to
{{a,a) : a standard or non-standard, a non-standard}

is “wild”. Contrary to the previous restriction, this one is not de-
termined by the cycle structure of the model, but subject to some
constraints—in particular, its range may only consist of non-standard
numbers. Here we have quite some freedom when constructing an
f.n.s. model of Q* that has more than a few non-standard numbers.

Similar to the case of addition, the restriction of x to
{{a,n) : a non-standard, n standard}
is determined by S and +, whereas the restriction of x to
{{a,a) : a standard or non-standard, a non-standard}

is not uniquely determined (by S and +), but subject to some con-
straints.

I proceed in stages to establish the above characterization of f.n.s. £%-
models of Q, with each stage building on the previous stage.

In § 5.2 T deal with f.n.s. £LP-models.

In § 5.3 I introduce some helpful conveniences and prove some helpful
lemmas.

In § 5.4 I deal with f.n.s. £T-models.
In § 5.5 I deal with f.n.s. £9-models.
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Finitely non-standard models of the
progression fragment of Robinson
arithmetic

We recall the axiomatization of QP:

(Q1) Sz #0
(Q2) Sz=Sy—z=y
(Q3) z=0V3Iyz =Sy.

Fact An fn.s. model is a model of QP if and only if S restricted to the
set of non-standard numbers is a permutation of the set of non-standard
numbers.

Proof The if direction is trivial. For the only if direction, take any
f.n.s. model that is a model of (Q1)-(Q3). By (Q1) and (Q2) and by the
definition of ‘— is an f.n.s. model’, none of our model’s non-standard
numbers has a standard successor. Thus since 0 is standard:

— By (Q3) each of our non-standard numbers has a non-standard prede-
Cessor.

— Thus (Q2) and (Q3) give that .S restricted to the set of non-standard
numbers is a permutation of the set of non-standard numbers.

Fact The LP-reduct of each f.n.s. model of QP is uniquely determined
by the restriction of S to the model’s set of non-standard numbers.

Proof For each f.n.s. model of QP, the definition of ‘— is an f.n.s.
model’ determines the interpretation of (the constant symbol) 0—namely,
as (the number) 0—as well as the restriction of S to the standard num-
bers. Thus obviously the restriction of S to the set of non-standard
numbers uniquely determines the £P-reduct of each f.n.s. model of QP.

10
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Examples

(a)

Consider an f.n.s. £LP-model with a set A of non-standard numbers
given by

A=A +A, A =A{a11, a15} Ay={az1, az2}

(with the denotations of the ‘a__’ distinct from each other), and
with S| A given by
S S
‘" v
a1 ai2 ag1 Qg 2-
\5/\ r\S/\

Clearly S is a permutation of A—that is, S is a permutation of the
set of non-standard numbers. Thus, by Facts 5.2.2 and 5.2.4, the
above defines a unique (up to isomorphism) f.n.s. £P-model of QP.

Note that each of A; and A, is closed under S and has no proper
subset closed under S—these are the cycles of the model. The
partition of A with A; and A, as its parts is the cycle structure of
the model.

Another f.n.s. £LP-model of QP with a set A of non-standard numbers
is given by

A=A +A4 A ={ay, a1 013} Ay ={ax1},

with S| A given by

a1 ®a1,3 a2'® S.

Obviously, each f.n.s. £P-model of QP is recursively representable (by
Fact 5.2.2 and the definition of ‘— is an f.n.s. LP-model’). Up to isomor-
phism, (recursive representations of) the f.n.s. £LP-models of QP are also
easy to recursively enumerate: for each positive integer n there is—up to
isomorphism—as many f.n.s. LP-models of QP with n non-standard num-
bers as there are permutations of the set {1, ..., n} (and by Facts 5.2.2
and 5.2.4, each such model is trivially recursively representable.)

11
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Some conveniences and some helpful
lemmas

From here on, we work with an arbitrarily chosen £P-model of QP. We
later (Assumption 5.4.2) expand it to an arbitrarily chosen £*-model
of QP, which we in turn will (Assumption 5.5.2) expand to an arbitrary
LR-model of Q*.

Assumption N, is an arbitrarily chosen f.n.s. LP-model of QP.

I introduce some terminology, conventions, notations, definitions and
results that will be useful when working with N, and its upcoming ex-
pansions. In particular, Conventions 5.3.4 together with Remark 5.3.5(a)
make good on my promise from 9 5.1.13 to make the scare-quoted no-
tions precise in the well-known fact mentioned:

Each permutation of a finite set has a unique “decomposition”
into “cycles” on “disjoint orbits”.

Conventions
(a) Idenote the set of non-standard numbers of N, by ‘A’.

(b) By the definition of ‘— is an f.n.s. LP-model’, Fact 5.2.2, Assump-
tion 5.3.2 and the well-known fact mentioned, there is a unique
partition of the finite set of non-standard numbers of N,—that is,
of the set A——corresponding to the S-permutation of A: each part
of this partition is a subset of A that is minimal with respect to
closure under S (each part is closed under S but none of its proper
subsets are). This partition is the (successor) cycle structure of N,
and the parts of the partition are the (successor) cycles of N,,.

(c) By v, I denote the number of cycles in the cycle structure.

(d) I use ‘A_’, with indices denoting positive integers, to denote the
cycles—that is, the v cycles are:

Ay, ) A,

(e) A cycle index is a natural number ¢ such that 1 <7 <wv.

12
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I use ‘u[-]’ to denote the lengths of (that is, the set sizes of) the
cycles—that is, for each cycle index 1:

([¢] = the length of cycle A; = the size of A;.

I use

‘a_y’, ‘a_y’, fa_g’, ..
to denote the (non-standard) numbers in a cycle—that is, for each
cycle index ¢, the u[¢] non-standard numbers in A; are:

a’i,la veey ai,y[l-].

Remarks

(a)

Translating the (relevant parts of the) above into the terminology
‘unique decomposition into cycles on disjoint orbits’:

— A is closed under S and the structure (A, S | A) is a permutation
of a finite set.

— For each cycle index ¢:
— A, is an orbit.
— A, is closed under S and the structure (4;,5 | 4;) is a cycle
(on the orbit A4;).

— The unique decomposition of (4,S | A) (into cycles on disjoint
orbits) is the union of the v disjoint substructures

<A11‘S~1«A1>y ey (AWSlAV)

Note that Examples 5.2.6 used the notation, terminology and con-
ventions just introduced. This was no coincidence: this lets us view
these examples’ £P-models as concretizations of the arbitrarily cho-
sen and thus indeterminately specified N,.

As N, is assumed to be an arbitrarily chosen f.n.s. LP-model of QP,
some of what was introduced by Conventions 5.3.4 may directly
apply to other presentations of f.n.s. models of QP. For example,
‘the cycle structure of’ always applies. Other notions may require
suitable reformulations.” For example ‘cycle index’ is not applicable
to each presentation of an f.n.s. model.

For an example of a reformulation, see Corollary 5.4.15 and its reformulation Exam-
ple 5.4.17.

13
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Assumption Without loss of generality, for each cycle index <:
Sa;;=a;;41 if J<uwli]
Sa; ) = 041
Example Suppose we have a concretization of N, given by:
A=A +A A =A{a11, a13, a13} Ay ={az1, azz}-

Then, by Assumption 5.3.6, S| A is given by:

S S
a1} a2} a3 Qg1 Ao 2-
S

Definition For each cycle index i:

a;: 7 — Az
a,(j) =a;) ifandonlyif j=k mod u[z].

An example should illustrate the point of Definition 5.3.8.

Example Suppose u[1] = 3—that is:

A= {a'l,la a2, a1,3}'

We then have:

a,(0) = a3
a1(—1) = a1, a;(1) = a1,
ay(—2) = a1 a,(2) = Q12
a;(=3) =ay3 a1(3) =ay3
ai(—4) = a2 a,(4) = a1
ay(=5) = a1 a,(5) = Q1,2
ai(—6) = a3 a,(6) = Q13

14
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€5.3.11 Definition The predecessor function on N, notation ‘P’, is defined
by:
P: N, — N,
P0:=0

Pn:=n-1 if n > 0 is standard
Pa;; = a;

Pam- = ai,j_l lf] >1

q€5.3.12 Definitions

(a) The iterated successor function on N, notation ‘S™’, and the it-
erated predecessor function on N, notation ‘P™—’, are mutually
defined by:

(1) S™—: ZxN,— N,
S% =«
Sy = SS"« ifn>0
S"a = P"a ifn<0
(2) P™—: ZxN,— N,
Pla =«
Pty = PP"a ifn>0
Pty = S"a ifn<0

€5.3.13 Lemmas For each standard n:
(a) — For each integer m = —n:
S™n =n+m.
— For each integer m < —n:
S™n = 0.
(b) — For each integer m < n:
P™n=n—m.

— For each integer m > n:

P™n =0.

15
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Proofs Intuitively follows from Definitions 5.3.12. I leave proofs as
exercises for skeptic readers.

Lemmas For each non-standard a; ; and for each integer n:
a) S"a;;=a,(j+n)

b) P"a;;=a;(j —n)

c) a;;=2_8"a;(j—n)

d) a;; =P"a;(j +n)

a;; = SmxHilg, ;

a;; = Prxulilg, ;.

Proofs All follow from (Assumption 5.3.6 together with) the defini-

tions of ‘a_’, ‘S7’ and ‘P’ (Definition 5.3.8 and Definitions 5.3.12). A
more detailed proof is in § 5.A, for readers who want it.

Lemmas For each standard n and for all integers k& and m:

(a) We have
SkSmn = Sktmp
if and only if:
- m > —n; or
- m< —nandk <0.
(b) We have
Pkpmp = pktmp
if and only if:
- m<n;or

- m>mnand k > 0.

Proofs Intuitive and straightforward, but a bit tedious. I leave proofs
as exercises for skeptic readers.

16
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Lemmas For each non-standard a and for all integers k& and m:
(a) SkS™ma = Sktmgq
(b) Pk¥Pmq = pktmq,

Proofs See § 5.A.

I think most readers find Lemmas 5.3.13, 5.3.15, 5.3.17 and 5.3.19 all
quite obvious and intuitive. For this reason, while I try to explicitly
indicate each application of a previous result in my proofs, with these I
make an exception—a reference to one of these lemmas would probably
distract more than it would help.

Lemma For each non-standard a;; and for each integer n, we have

n p—
St =a;;

and
Pla;;=a;;
if u[¢] divides n—otherwise we have neither.
As for Lemmas 5.3.13, 5.3.15, 5.3.17 and 5.3.19: Lemma 5.3.22 might be

quite obvious to some readers, who thus may want to skip its proof. In
any case, a proof is in § 5.A.

Finitely non-standard models of the
addition fragment of Robinson arithmetic

We recall the axiomatization of Q*:
(Q1) Sz #0

(Q2) Sz=8Sy—z=y
(Q3) z=0VvIyz =Sy
Q1)
(@5)

z+0=z

17
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5 Finitely non-standard models of Robinson arithmetic
Assumption N, is an arbitrarily chosen £*-expansion of N,
For readers’ convenience, we recall our previous assumption about N,.

Assumption 5.3.2 (restated) N, is an arbitrarily chosen f.n.s. LP-
model of QP.

Remark N, is thus an arbitrarily chosen f.n.s. £T-model of QP.

Fact N, is a model of Q7 if and only if:

(a) For each non-standard a and for each standard n:

a+n=_S8"a.

(b) For each (standard or non-standard) «, for each cycle index ¢, and
for each integer j:

a+a;(7) = 877 a + a;;).

Remarks

(a) Fact 5.4.6, modulo a suitable reformulation, applies to each f.n.s.
model of QP. I formulated Fact 5.4.6 only for N, simply to have
access to the convenient machinery introduced in § 5.3.

(b) Iwill continue in the style of Fact 5.4.6: results, definitions, et cetera
will be formulated for N, and its expansions, leaving more general
reformulations implicit. (For pedagogical reasons Example 5.4.17
presents an explicit reformulation of Corollary 5.4.15.)

I split the proof of Fact 5.4.6 into two lemmas: Lemma 5.4.9 corresponds
to Fact 5.4.6(a) and Lemma 5.4.11 corresponds to Fact 5.4.6(Db).

18
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9549 Lemma (a) and (b) below are equivalent.

(a) (1) For each non-standard a:
N, [a/z] E (Q4).
(2) For each non-standard a and for each standard n:
Ny, la/z,n/y] E (Q5).
(b) For each non-standard a and for each standard n:

a+n==S8"a.

q5.4.10 Proof We have (a) if only and only if:
(0) a+0=a for each non-standard a; and

(S) a+n =S(a+(n—1)) for each non-standard a and for each standard
n > 0.

Some equivalence-preservering rewriting using (0) and (S) gives (b), thus
completing the proof:

a+0=a (by (0))
= S%

a+1=S5(a+0) (by (8))
=S55% (by previous)
= Sla

at2=5(@a+1) (by (5))
=SSla (by previous)
= S%

a+3=5(a+2) (by (5))
= S85%a (by previous)
= S3a

19
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Lemma (a) and (b) below are equivalent.

(a) For each (standard or non-standard) « and for each non-standard
a:
N, [a/z,a/y] F (Q5).

(b) For each (standard or non-standard) «, for each cycle index ¢, and
for each integer j:

a +a;(5) = S a +a4y).
Proof We have (a) if and only if
a+Sa=S(a+a)

for each « and for each non-standard a. Thus (a) is equivalent to that
for each o and each cycle index 1:

a+8Sa;; =S(a+a;;)

a+ Sai,“[i] = S(ot + ai#[i]).

By the definition of ‘a_’, this system of equations is equivalent to:

o+ ai(—2) =5

(a +a;(-3))

a+a;(—1) = S(a + a;(—2))

a+a;(0) =S(a+a;(-1))
a+a;(1) = S(a + a;(0))
a+a;(2) = S(a +a(1))
a+ay(3) =S(a +a;(2)
a+a;(4) =S(a+a;(3))
(a +a;(4))

a+a;5)=8

Using the equivalence (under QP) between

B =Sy

20
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and
y =578,

we rewrite those equations that on their right hand side have a non-
positive argument to a;:

(-3 a+a;(=3) =S o +a;(—2))
(-2 o +a;(—2) =87 (a +a;(-1))
(0) o +a;(—1) = S~ (a + a,(0))
(1) a+ay(0) = S7Ha +ay(1))
(2) a+a;(2) = S(a +a(1))

(3) a+a;(3) = S(a +a,(2))

(4) a+a;(4) = S(a +a,(3))

(5) a+a;(5) =S(a +a;(4))

We trivially have
a+a;(1) =S (a+a;,),
which together with the following equivalence-preserving rewritings give

(b), thus completing the proof.
— For (0), (-1), (-=2), (=3), ... we have:

a +a;(0) = 8o + a;(1)) (by (0))
=S5 a+a;,)
=S5 Yo + a;1)

o +a;(—1) = S7}(a + a;(0)) (by (1))
=85718% o+ a,,) (by previous)
=87 Yo +a;)

o +a;(—2) = 57} (a + ay(-1)) (by (=2))

=871 " Na+a,,) (by previous)
=57 a+ay)

21
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o +a;(—3) = 57} (a + a;(-2)) (by (-3))
=871 Ya+a;,) (by previous)
=57 a +a;,)

— For (2), (3), (4), (5), ... we have:
@ +ai(2) = S(a +ai(1)) (by (2))
=S(a+a;1)
=85 a+ay)

a+a;(3) = S(a +a;(2)) (by (3))
=85 a +a;,) (by previous)
=85 +ay)

a+a;(4) = S(a +ai(3)) (by (4))
=85 a+a;,) (by previous)
=S a+a;,).

a+a;(5) = S(a +a;(4)) (by (5))
=85 (a +a;,) (by previous)
=8 a+ayy)

q€5.4.13 Fact 5.4.6 (restated) N, is a model of Q" if and only if:

(a) For each non-standard a and for each standard n:

a+n==S8"a.

(b) For each (standard or non-standard) «, for each cycle index ¢, and
for each integer j:

a+a;(j) =S o+ Q1)
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Proof N, is a model of Q* if and only if it is a model of (Q1)—(Q5).
N, is a model of (Q1)—(Q3) since it is a model of QP. Thus N, is a
model of Q% if and only if it is a model of (Q4) and (Q5)—that is, if
and only if:

(Q41) For each (standard or non-standard) number a:
Ny, [a/z] F (Q4).
(Q57) For all (standard or non-standard) numbers o and S:
Ny, [a/z,B/y] = (QB).

The case o standard in (Q4+) and the case o and 3 standard in (Q5+)
always hold by the definition of ‘“— is an fn.s. £LT-model’. By Lem-
mas 5.4.9 and 5.4.11 the remaining cases hold if and only if we have (a)
and (b).

Corollary [of Fact 5.4.6] Suppose N, E Qt. Then N, is uniquely
determined by its LP-reduct together with the restriction of + to

{{«,a;1) : « standard or non-standard, 7 cycle index}.

Proof We need to show that this uniquely determines 4. The defini-
tion of ‘—is an f.n.s. £L1-model’ determines + on the standard numbers.
Given the LP-reduct and the given restriction of +, the remaining cases
are determined by the equations in Fact 5.4.6.

Example Here follows a reformulation of Corollary 5.4.15 that applies
to each f.n.s. model of Q.

Consider any f.n.s. model M of Q*. For each cycle C of M, let y(C)
be an arbitrarily chosen number from C. The L£*-reduct of M is then
uniquely determined by its LP-reduct together with the restriction of +
to

{{a,y(C)) : a standard or non-standard, C' cycle}.

Fact Suppose N, E Q. Then for each cycle index ¢ and for each
(standard or non-standard) o there is a cycle index k such that:

— o +aisin Ay for each a in A;; and

— u[k] divides u[z].
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For the purpose of elsewhere uses of it and elsewhere references to it, I
prove the following lemma first.

Lemma Suppose N, £ Q7. Then for each (standard or non-standard)
o and for all cycle indices ¢ and k:

o+ a is in Ay for some a in A;
if and only if

a+aisin Ag for all @ in A;.

Proof Let a,; and a,; be any numbers in 4;. We have
a+a;;=58"Ya+a;) (by Fact 5.4.6(b))
= Sj—lSO(a + ai’l)
— Sj—lsl—l—(l—l)(a + a’i,l)
=578 (a +a;y)
= Sj_l(a + a“i,l) (dltto)
Thus, since cycles are closed under (positive or negative iterations of) .,
either both o + a,; and o + a;; are in A or none of them is.
Proof [of Fact 5.4.18] We have
(1) a+a;; =S (a+a,,)
by
a+a;; =a+Sa;,y
=+ Say(ulil)
= o+ a,(uli] + 1)
= SHH1-Y(q +qa,;)  (by Fact 5.4.6(b))
— S#[i](a + a‘i,l)'

By (1), @ +a;; must be non-standard (since u[i] > 0). Thus we have an
ag ; such that:

(1) o+ a;1 = Qg ;-
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— By (f) and Lemma 5.4.20, @ + a is in A for all a in A;.

— Rewriting with (1) in (f) we have
ag; = S“[i]ak,j,

which by Lemma 5.3.22 gives that u[k| divides u[z].

Fact 5.4.18 is in a sense included in Fact 5.4.6: if we change ‘a;(j)’ to
‘a;;’ in Fact 5.4.6(b), we need to add a divisibility condition, as in the
following alternative formulation of Fact 5.4.6.

Fact N, is a model of Q7 if and only if:

(a) For each non-standard a and for each standard n:

a+n==S8"a.

(b) For each (standard or non-standard) « and for each non-standard

ai,]-:

a+a;; =5 a+a;,).
(c) For each (standard or non-standard) o and for each cycle index 1
there is a cycle index k such that:
- a+a;;isin Ag.

— u[k] divides u[z].

Remark Note that it is only for j = 1 that Fact 5.4.24(c) requires
that & +a, ; is in a cycle of length dividing u[¢]. Lemma 5.4.20—which
may be proved using Fact 5.4.24(b) in the same way it was proved using
Fact 5.4.6(b)—tells us why this works.

Proof [of Fact 5.4.24] The only if direction is immediate by Fact 5.4.6
and Fact 5.4.18. For the if direction, it clearly suffices to prove (the
statement of) Fact 5.4.6(b)—that for each (standard or non-standard)
«, for each cycle index ¢, and for each integer j:

a+a;(j) =8 a+a;,).
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Thus let « be any number, let ¢+ be any cycle index and let 5 be any
integer. We have an a;; and an integer n such that:

(1) a;(j3) = Qi k
(1) j=k+nxuf]

‘We then have

a+a(7)
=atag (by (1))
=S5 a+a;;) (by Fact 5.4.24(b))

= Sk-1gmlil(q 4 a;,)  (by Lemma 5.3.22 and Fact 5.4.24(c))
— Sk+nxu[i]—1(a +a, 1)

=51 (a +a;4) (by (1))-

When constructing an f.n.s. £*-model of Q*, Fact 5.4.24 is more useful
than Fact 5.4.6: from the former we may extract the following simple

recipe for how to construct—up to isomorphism—any f.n.s. £1-model
of QF.

By Fact 5.4.24, up to isomorphism each fn.s. £T-model of Q* may
be constructed by following the below instructions for how to turn our
arbitrarily chosen fn.s. £t-model N, of QP into a concrete model of

Q.
(a) Choose a cycle structure for the LP-reduct.

(b) For each (standard or non-standard) « and for each cycle index i:
choose a non-standard a in a cycle of length dividing u[¢] and set

a+a;; =a.

(c) Refer to the equations in Fact 5.4.24 for how to define those remain-
ing additions that involve non-standard numbers. (Those additions
only involving standard numbers are of course as expected—and
given by the definition of ‘— is an f.n.s. £1-model’.)
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Example We follow the recipe in 9 5.4.28 to expand our LP-model
of QP from Example 5.2.6(a) to an £T-model of Q*." Remark 5.3.5(b),
it was no coincidence that we defined that model using some of the
notation and conventions later introduced for N,—thus letting us view
it as a concretization of N,. We recall the model:

A=A+ A,
A= {a1,1, a1,2}
Ay = {a2,1, a2,2}

Sal,l =012
Sal,z =011
Sa’2,1 = Qg2

Sa2,2 = a211.

We follow the recipe.

(a) The first instruction of the recipe—*choose a cycle structure for the

(b)

LP-reduct”™—is already taken care of (by Example 5.2.6(a)).

For the second instruction, for each (non-standard or standard) o
we should choose non-standard a and b and set

o + al’l =aqa

o+ a2,1 = b,
while ensuring that both a and b satisfy their respective divisibility
requirements—but since both cycles are of equal length, the divis-

ibility requirements will automatically be satisfied no matter our
choices.

— For « = n standard, and for ¢ = 1 and 2 = 2, we choose:

n+a;;:=8",; (=a,;ifneven, a;, if n odd).

*

§ 5.C provides a Coq formalization which verifies that the thus obtained concretization
of N, indeed is a model of Q.
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- Fora= a__ non-standard we choose:

Q11+ 017 = 0ay
Q19+ Q11 =013
ap1ta11=ay;
Qg2+t 011 =0g9
a1 +tag; =ag,
a12+tag1 =0y,
Gp1taz1=ay;
Qg2 tag1 =0ay;.
(c) For the third instruction, we should refer to the equations in Fact 5.4.24
for how to define those remaining additions that involve non-standard

numbers. To make our definition completely explicit, while not bor-
ing readers too much, I defer that to § 5.B.

q 5.4.30 Fact FEachfn.s. LP-model of QP can be expanded to an f.n.s. £*-model
of QF.

q5.4.31 Proof Each fn.s. £LP-model of QP is isomorphic to one constructed
following the recipe in 9§ 5.4.28. Thus consider a thus constructed f.n.s.
LP-model of QP. No matter the cycle structure chosen in 9§ 5.4.28(a),
one may carry out § 5.4.28(b): for each standard or non-standard o and
for each cycle index 7 one may—to satisfy the divisibility requirement—
simply choose an a in A;. (Given that €9 5.4.28(a) and 5.4.28(b) have
been carried out, ¢ 5.4.28(c) may always be carried out.)

€5.4.32 Fact There are uncountably many non-isomorphic f.n.s. models of Q.

€5.4.33 Proof Consider concretizing N into a model of Q* by following the
recipe in § 5.4.28. To carry out ¢ 5.4.28(a) we choose:

(1) A=A = {a1,1, a1,2}-

For purposes of this proof, it does not matter how we carry out g 5.4.28(b)
for the non-standard numbers—Iet us choose:

(1) aj1tay;=a;; =a15+0a;.
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Next note the following freedom we have in completing € 5.4.28(b):
for each natural number n we may choose either n +a;; = a;; or
n+ay; = ajy, and no matter our choices the last step of the recipe
(9 5.4.28(c)) may be carried out, and furthermore, for each set of such
choices, it may be carried out in exactly one way. Thus there is a bijec-
tion between

N —{a11, a1}

and the set of conretizations of N that models Q* and that satisfy (t)
and (}). Since distinct such concretizations are non-isomorphic, we thus
have uncountably many non-isomorphic f.n.s. models of Q™.

Open problem? Is there a recursively enumerable set R of recursive
presentations of f.n.s. models of Q* such that, up to isomorphism, each
recursive f.n.s. model of QT has a representation in R?

Finitely non-standard models of Robinson
arithmetic

We recall the axiomatization of Q:

(Q1l) Sz #0

(Q2) Sz=Sy—z=y

(Q3) z=0Vv3Iyz =Sy

(Q4) z+0=1z

(Q5) z+Sy=3S(z+y)

(Q6) zx0=0

(Q7) zxSy=zxy+z.

Assumption N is an arbitrarily chosen £®-expansion of N,.
From here on we assume that N, is a model of Q%.

Assumption N, EQt.
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For readers’ convenience, we recall our previous assumptions about NV, .

Assumption 5.3.2 (restated) N, is an arbitrarily chosen fn.s. LP-
model of QP.

Assumption 5.4.2 (restated) N, isan arbitrarily chosen £*-expansion
of N.
P

Remark N is thus an arbitrarily chosen f.n.s. £2-model of Qt.
The notation provided by the following definition will be convenient.

Definition For each language L expanding L%, addition to the right,
notation ‘@_ _’, is defined for each number § in each L-model M:

@p,M T M- M
®p () = a + .
Notations
— When possible, I allow myself to omit the second subscript in ‘@_,_".

— When possible, I allow myself to omit the parentheses in ‘@_,_(-)’.

The purpose of Definition 5.5.10 is to provide a convenient notation for
left-associative sums.

Example For all « and 3 in any £2-model M:
@2& =«
®pa=a+p
®jx = (a+B)+ B
@z = ((a+B)+B)+8
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Fact N is a model of Q if and only if:

(a) For each non-standard a and for each standard n:

a xn=aJ0.

(b) For each standard n, for each cycle index 7, and for each integer j:

n x a;(j) = S™UD(n x a;,).

(c) For each non-standard a, for each cycle index %, and for each positive
integer j: _
axa;(j) = EBfl_l(a, X ;1)

I split the proof of Fact 5.5.14 into three lemmas: Lemma 5.5.16 corre-

sponds to Fact 5.5.14(a); Lemma 5.5.18 corresponds to Fact 5.5.14(b);
Lemma 5.5.20 corresponds to Fact 5.5.14(c).

Lemma (a) and (b) below are equivalent.

(a) (1) For each non-standard a:
N,la/z] E (Q8).
(2) For each non-standard a and for each standard n:
N,[a/z,n/y] = (Q7).
(b) For each non-standard a and for each standard n:

a xn=ax0.

Proof We have (a)(1) and (a)(2) if only and only if:
(0) a x 0= 0 for each non-standard a; and

(S) axn = ax(n—1)+a for each non-standard a and for each
standard n > 0.
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Some equivalence-preserving rewriting using (0) and (S) gives (b), thus
completing the proof:
ax0=0 (by (0))
= a2

ax1=04+ax0 (by (S))
=®0+0 (by previous)
=@l0

ax2=04+ax1 (by (8))
=®l0+0 (by previous)
= @20

ax3=0+ax2 (by (8))
=®20+0 (by previous)
=30

q 5.5.18 Lemma (a) and (b) below are equivalent.

(a) For each standard n and for each non-standard a:
N,[n/z,a/y] E (QT).
(b) For each standard n, for each cycle index %, and for each integer j:

n x a;(j) = S™U-(n x ai1)-

q 5.5.19 Proof We have (a) if and only if

nxSa=nxa+n

32



5 Finitely non-standard models of Robinson arithmetic

for each standard n and for each non-standard a—that is, if and only if
for each standard n and for each cycle index z:

nxSa;;=nXa;;+n

X Sa; ) =N X @y + N
This system of equations is equivalent to:

nxa;(—2)=nxa;(=3)+n

nXxa(-1)=nxa(-2)+n

nxa;(0)=nxa(-1)+n
n X a;(1) =nxa;(0)+n
nxa;(2)=nxa(l)+n
nxa;(3)=nxa;(2)+n
nXxa;(4)=nxa3)+n
(4)+n

n x a;(5) =n X a;

By Fact 5.4.6(a) the above is equivalent to:

n X a;(—2) = S™(n x a;(-3))

n X a;(—1) = S"(n x a;(—2))
n x a;(0) = S™(n x a;(—1))
n x a;(1) = 8™(n x a;(0))
n X a;(2) = S™(n x a;(1))
n x a;(3) = S™(n x a;(2))
n X a;(4) = S™(n x a;(3))
n x a;(5) = S™(n x a;(4))

Using the equivalence (under QP) between

a=S"g
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and
p=5"a,

we rewrite those equations that on their right hand side have a non-
positive argument to a;:

(-3 n x a;(—3) =5"(n x a;(—2))
(-2 n X a;(—2) =5"(n x a;(—1))
(-1 n X a;(—1) =S7"(n x a;(0))
(0) n X a;(0) =S7"(n x a;(1))
(2) n x a;(2) = 8™(n x a;(1))
(3) n x a;(3) = 8"(n x a;(2))
(4) n X a;(4) = S"(n x a,(3))
(5) n X a;(5) = S"™(n x a;(4))

We trivially have
n x a;(1) = 5™ (n x a;,),

which together with the following equivalence-preserving rewritings give
(b), thus completing the proof:

- For (0), (-1), (—2), (—3), ... we have:

n % a;(0) =57"(n x a,(1)) (by (0))
=57 n(n X a; 1)
= Snx( (’)’L X aj, 1)
nxa;(=1) =57"(n x a,(0)) (by (-1))
=580 D(n x a;,) (by previous)
= §™x(=1-Y(n x a;1)
7 x ,(~2) = §(n x a,(~1)) (by (~2))

= 8nsm(=1-U(n x a;,) (by previous)
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= 8™ (2N (n x a;,)

n X a;(=3) = 87"(n x a;(—2)) (by (=3))
=S§S™ (=2 (n x a;,) (by previous)

= 8™(=3"Y(n x a;,)

— For (2), (3), (4), (5) ... we have:
n x a;(2) = S"(n x a;(1)) (by (2))
=85"(n x a;,)

=S (n x a;,)

n X a;(3) = 5™(n x a;(2)) (by (3))
=SS U(n x a;;)  (by previous)

=SB (n x a;,)

n X a;(4) = S"(n x a,(3)) (by (4))
=S"8™CU(n x a;;)  (by previous)

= (4= (n x a;1)

n x a;(5) = 5™(n x a;(4)) (by (5))
= $"S™* (4 N(n x a;,) (by previous)

= S™6N(n x a;,)

9 5.5.20 Lemma (a) and (b) below are equivalent.

(a) For all non-standard a and b:

N,la/z,b/y] E (QT).
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(b) For each non-standard a, for each cycle index %, and for each positive
integer 7: ‘
axa;(j) = 9{;1(‘1 X a;1)-

Proof We have (a) if and only if

axSb=axb+a

for all non-standard a and b—that is, if and only if for each non-standard
a and for each cycle index <:

aXSa;;=aXa;;+a

a X Sa; 5 =a X a;,;+a.

This system of equations is equivalent to:

(2) axa;(2)=axal)+a
(3) axa;(3)=axa;2)+a
(4) axa;(4) =axa;3)+a
(5) axa;5)=axa;4)+a

We trivially have
ax a;(1) = @' (a x a;,),

which together with the following equivalence-preserving rewritings give
(b), thus completing the proof.
axa(2) =axal)+a (by (2))
=aXxXa;;+a
= @g(a x a;1)
= @2 (a x a;1)

axa;(3)=axa2)+a (by (3))

=@ Yaxa;;)+a  (by previous)

= @3 (a x a;1)
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axa;(4)=axa3)+a (by (4))
=@3 '(axa;;)+a  (by previous)

=®; (a X a;1)

axa;(5)=axa;4)+a (by (5))
=@; Y(axa;;)+a (by previous)

= @5 (a x a;1)

Fact 5.5.14 (restated) N is a model of Q if and only if:

(a) For each non-standard a and for each standard n:

a X n=@z0.

(b) For each standard n, for each cycle index 7, and for each integer j:
nx a;(5) = S0V (n x a;4).
(c) For each non-standard a, for each cycle index ¢, and for each positive

integer j:
: i—1
axa(j) =@, (ax a;1)-

Proof N is a model of Q if and only if it is a model of (Q1)—-(Q7). N
is a model of (Q1)—(Q5) since it is a model of Q*. Thus N is a model
of Q if and only if it is a model of (Q6) and (Q7)—that is, if and only
if:
(Q6T) For each (standard or non-standard) number o:

Ny, [o/z] E (Q6).
(Q7+) For all (standard or non-standard) numbers « and S:

Ny, la/z,B/y] £ (QT).
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The case o standard in (Q6+) and the case @ and B standard in (Q7+)
always hold by the definition of ‘— is an f.n.s. £T-model’. By Lem-
mas 5.5.16, 5.5.18 and 5.5.20 the remaining cases hold if and only if we
have (a), (b) and (c).

Remark We could have merged Fact 5.5.14(b) and Fact 5.5.14(c) into
the following.

For each (standard or non-standard) «, for each cycle index
1, and for each positive integer j:

a x a;(j) = & (@ x ;).

However, I found it worth highlighting that the case o standard is equiv-
alent to something simpler.

Corollary [of Fact 5.5.14] Suppose N E Q. Then N is uniquely
determined by its £*-reduct together with the restriction of x to

{{«,a;1) : « standard or non-standard, ¢ cycle index}.

Proof We need to show that this uniquely determines x. The defini-
tion of ‘“— is an f.n.s. £2-model’ determines x on the standard numbers.
Given the £*-reduct and the given restriction of x, the remaining cases
are determined by the equations in Fact 5.5.14.

Fact Suppose N k£ Q. Then for each cycle index 7 and for all a;; and
ai’k in A'L:
0 x ai’]' =0x ai’k.

Proof
0x a’i,j =0x ai(j)

= §0x(-1)(0 x a;1) (by Fact 5.5.14(Db))
= S™*¢-1)(0 x a;,)

=0 x a;(k) (ditto)

=0Xa;.
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€ 5.5.29 Fact Suppose N E Q. Then for each standard n > 0 and for each cycle
index ¢ there is a cycle index 7 such that:
- nXaisin A; for each a in A4;.
— u[j] divides n x ulz].

€ 5.5.30 Proof Let n > 0 be standard and let ¢ be a cycle index. With a proof

similar to the proof of Lemma 5.4.20, one may show that it suffices to
prove that n x a,; is in a cycle of length dividing n x u[i]. We have

() nXa,= Snx“[i](n X a;1)
by

nXa;; =nXSa; )

=n xa;(ufi] +1)
= XU+ (n x g, ;) (by Fact 5.5.14(b))

= S”X“[i](n X ;1)
- By (1) and since n > 0, n x a,; must be non-standard, say
1) nXa;;isin Aj.
- By (1), (1) and Lemma 5.3.22, u[j] divides n x u[z].

€5.5.31 Fact Suppose N E Q. Then for all non-standard a and a; ;:

axa;;= EBf;[i](a X a; ;).
€ 5.5.32 Proof
axa;;=axa;j)
=a x a;(j + u[i])
= @iﬂ[i]_l(a X a;1) (by Fact 5.5.14(c))

— oM@l (a x a;y)

= oM(a x a;) (ditto).
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Corollary Suppose N E Q. Then a X b is non-standard for all non-
standard a and b.

Proof Suppose b= a,_ for some cycle index :. We then have

axb=axa;_

= ot xa;_) (by Fact 5.5.31)
= (@ (@ xa, ) +q,

which is non-standard by Fact 5.4.18.

Similar to the corresponding situation in § 5.4, both Facts 5.5.29 and 5.5.31
are in a sense included in Fact 5.5.14. And just as we had an in a sense
more practically useful alternative to Fact 5.4.6 (namely, Fact 5.4.24),
we here have such an alternative to Fact 5.5.14 (namely, Fact 5.5.36
below).

Fact N is a model of Q if and only if:

(a) For each non-standard a and for each standard n:

a xXn=@z0.
(b) For each standard n and for each non-standard a; ;:
nxa;;=S"0"Y(nxa,,).
(c) For all non-standard a and a; ;:
axa;;= EBi_l(a X ;1)

(d) For each standard n > 0 and for each cycle index ¢ there is a cycle
index j such that:
(1) nxa;; isin A;.
(2) wulj] divides n x u[7].

(e) For each non-standard a and for each cycle index 2:

axXa; = @ZM(@ X ;1)
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q 5.5.37 Proof The only if direction is immediate by Facts 5.5.14, 5.5.29 and 5.5.31.
For the if direction it clearly suffices to prove the respective statements

of Facts 5.5.14(b) and 5.5.14(c)—that is:

— The statement of Fact 5.5.14(b):
For each standard n, for each cycle index %, and for each
integer 7: .

nx a;(j) = S™UV(n x a;,).

— The statement of Fact 5.5.14(c):
For each non-standard a, for each cycle index 7, and for each
positive integer j:

axa;(j) = 69:];1(0’ X a;q).

— Proof of the statement of Fact 5.5.14(b):

The case n = 0 is taken care of by Fact 5.5.27, which may be proved
using (b) similar to how it was proved using Fact 5.5.14(b). Thus let
n > 0. We have an a;, and an integer p such that:

() a,(j) = a;r
€ j=r+pxuli.
We then have

n x a;(7)
—nxa, (by (1))
= Snx('r‘—l)(n X CL.L"]_) (by (b))

= §mX(r=Dgnxpxulil(n x g, ) (by Lemma 5.3.22 and (d))
— Snx(r+p><y[i]—1)(,n X a; 1)

= §™0D(n x a;;) (by (1))

— Proof of the statement of Fact 5.5.14(b):

We have an a;, and a natural number p such that:

(1) a;(7) = Qi
(1) j=r+pxufl
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We then have

axa;(j)=ax a;r (by (1))
=@, (a x a5) (by (c))
=@ ! @qu[i] (@ xa;;) (by p applications of (e))
= @:ﬂxu[i]_l(a X ;1)
= 6911;1(0' X a;;) (by (1))

Similarly to how it was easy to extract a recipe (9 5.4.28) from Fact 5.4.24
for how to construct—up to isomorphism—any f.n.s. £*-model of Q,
Fact 5.5.36 together with Corollary 5.5.33 tell us how to extend that
recipe to a recipe for constructing—up to isomorphism—any f.n.s. £9-
model of Q.

By Fact 5.5.36 and Corollary 5.5.33, up to isomorphism each f.n.s. £%-
model of Q may be constructed by following the below instructions
for how to turn our arbitrarily chosen fn.s. £2-model N of Q* into
a concrete model of Q.

(a) Follow the recipe in 4 5.4.28 to make the £*-reduct concrete, and
in so doing make sure (d) below may be carried out.

(b) For each cycle index ¢: choose any (standard or non-standard) num-
ber o and set
0xa;;=a.

(c) For each standard n > 0 and for each cycle index ¢: choose a non-
standard a in a cycle of length dividing n X u[t] and set

nXa;;=a.

(d) For each non-standard a and for each cycle index 3: choose a non-
standard b such that )
b= @M[z]b
a

and set
axa;;:=b.
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(e) Refer to the equations in Fact 5.5.36 for how to define those remain-

ing multiplications that involve non-standard numbers. (Those
multiplications only involving standard numbers are of course as
expected—and given by the definition of ‘— is an f.n.s. £2-model’.)

Remark Corollary 5.5.33 justifies that the choice in € 5.5.39(d) must
be non-standard.

Example The model in Example 5.4.29 was an f.n.s. £-model of Q*
in the form of a concretization of N, . Following the recipe in q 5.5.39,
one may expand that to an f.n.s. £2-model of Q and end up with the
following concretization of N:*

L*-reduct: the model from Example 5.4.29—see 9 5.B.4 for a com-
plete explicit definition.

For n and m standard:

n X m = the ordinary product of n and m.
a X n for a non-standard and n standard:
axn=@aJ0.

n X a,,_ for n standard, and for 2 = 1 and z = 2:

n X aiyl = ai,]_

n X a;,=5"a;; =a;; if n even, a;, if n odd.

§ 5.C provides a Coq formalization which verifies that the provided concretization of
N indeed is a model of Q.
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q 5.5.43

q 5.5.44
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— a X b for a and b non-standard:

11 XA11 =011 Q11 X Qg1 =011
Q12 X Q11 =011 Q12 X Qg1 =01
Q31 X Q171 =031 Q21 X Qg1 =037
Q2 X Q11 = G2 Qoo X Qg1 = Qg9
11 X Q12 =011 Q11 X Qg2 =201
Q12 X Q12 =012 Q12 X Qg0 =012
Q31 X Q12 =031 Q21 X Qg9 =103
Q22 X Q12 = Q3 Qg2 X Qg2 = Qg 3.

Facts

(a) There is a commutative associative f.n.s. £T-model of Q* that can-
not be expanded to an f.n.s. £2-model of Q.

(b) There is a commutative non-associative f.n.s. £T-model of Q* that
cannot be expanded to an f.n.s. £L2-model of Q.

(c) There is a non-commutative associative f.n.s. £7-model of Q* that
cannot be expanded to an f.n.s. £2-model of Q.

(d) There is a non-commutative non-associative f.n.s. £L*-model of Q*
that cannot be expanded to an f.n.s. £2-model of Q.

Proofs Each f.n.s. £-model of Q is isomorphic to one constructed fol-
lowing the recipe in ¢ 5.5.39. Thus consider a thus constructed f.n.s.
L-model of Q. € 5.5.39(a) tells us that the chosen £*-reduct modeling
Q™ must make ¢ 5.5.39(d) possible to carry out. Thus to prove the facts,
for each of (a)-(d) we construct a suitable £*-model of Q* for which
€ 5.5.39(d) is impossible to carry out.” The actual constructions are not
that interesting. I defer those to § 5.A.

Fact There are uncountably many non-isomorphic f.n.s. models of Q.

*

The non-standard part of each of these models were found by automated search
procedures. These search procedures are developed and described in Ch. 6, where I
also provide Python implementations of them.
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Proof Consider concretizing N into an f.n.s. model of Q by following
the recipe in € 5.5.39. To carry out ¢ 5.5.39(a) we choose the following
L*-reduct.

— We choose the cycle structure:
A=A ={ay;, a12}.
— For each natural number n we choose:
n+ay; =0ay;.
— We choose:

aj1ta;=ag

a2 ta1; =aps.

Under the constraint that we should have a model of Q*, these choices
uniquely determines the £*reduct—for this I refer skeptic readers to the
recipe for concretizing N into a model of Q1 (9 5.4.28).

To carry out €9 5.5.39(b) and 5.5.39(d), we choose:

(1) 0xay;:=0
(1) 11 XQ11'=011="Qz1 X A7;.

It remains to carry out 99 5.5.39(c) and 5.5.39(¢). For ¢ 5.5.39(c)
we may, for each standard n > 0, choose either n x a;; = a;; or
n X ajq = a;,, and no matter our choices we end up with a model of Q
after carrying out—in the only way possible—9 5.5.39(e). Thus there is
a bijection between

N— {a1,1: al,z}
and the set C' of N-concretizations such that for each concretization ¢
in C: c has the given L*t-reduct, ¢ £ Q, and c satisfies (1) and ().

Since distinct such concretizations are non-isomorphic, we thus have
uncountably many non-isomorphic f.n.s. models of Q.

Open problem? Is there a recursively enumerable set R of recursive
presentations of f.n.s. models of Q such that, up to isomorphism, each
recursive f.n.s. model of Q has a representation in R?
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§ 5.A Some proofs

g5.A.1 Lemmas 5.3.15 (restated) For each non-standard a,; and for each
integer n:

a) S"a;;=a,(j+n)
b

d
e

(

(b)

() ay,; =5
(d)

(

(f

)
) a’i,j = P"X“[i]ai‘j.

€5A2 More detailed proofs than Proofs 5.3.16

— For n = 0, (a) and (b) are both straightforwardly provable by in-

duction, and then for n < 0 they follow from each other by their
definitions (Definitions 5.3.12(a)).

— For (c), by definition of ‘a_’ we have a k such that:

(1) a,(j—n)= Qi k
®) j—n=k mod u[i].
Then:

a;(j) =a;(y —n+n)

=a;(k+n) (by (1) and the definition of ‘a_’)
=S"a;p (by (a))
= S"a,(j — n) (by (1))-

One can prove (d) similarly.

— (e) and (f) follow from the definition of ‘a_’, together with (a) and
(b), respectively.
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95.A3 Lemmas 5.3.19 (restated) For each non-standard a and for all inte-
gers k and m:

(a) SkS™ma = Sktmq
(b) P*Pmg = P*¥tmq.
5A4 Proofs
(a) We have
(1) SkS™ma, i = S*a,(j +m) (by Lemma 5.3.15(a)).

By definition of ‘a_’, we have an n such that a;, € A; and

(i) ai(j + m) = a,,i,n

&) n=j+m mod u[z].

Then

SkS™a, ;= S*a,(j +m) (by (1))

= S*a;, (by (1))
=ay(n+k) (by Lemma 5.3.15(a)).
=a;(j+m+Ek) (by (X) and definition of ‘a_’)
= Sktmg, ; (by Lemma 5.3.15(a)).

(b) Similar to 5.1.4(a), using Lemma 5.3.15(Db) instead of Lemma 5.3.15(a).

q95.A5 Lemma 5.3.22 (restated) For each non-standard a,;; and for each
integer n, we have
S"ai,j = ai,j
and

a.

n
Pra; ij

g
if u[t] divides n—otherwise we have neither.
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Proof We have
S"a; ;= a;(j +n)

and, by definition of ‘a_’, we have
a;(7 +n) =a;;

if and only if
j+n=3j mod uft],

that is, if and only if
n=0 mod y[i],

that is, if and only if u[i] divides n. Similarly, we have P"a,; = a,; if
and only if n divides u[].

Facts 5.5.42 (restated)

(a) There is a commutative associative f.n.s. £T-model of Q* that can-
not be expanded to an f.n.s. £2-model of Q.

(b) There is a commutative non-associative f.n.s. £*-model of Q* that
cannot be expanded to an f.n.s. £2-model of Q.

(c) There is a non-commutative associative f.n.s. £7-model of Q* that
cannot be expanded to an f.n.s. £2-model of Q.

(d) There is a non-commutative non-associative f.n.s. £L*-model of Q*
that cannot be expanded to an f.n.s. £2-model of Q.

Proofs Each f.n.s. £-model of Q is isomorphic to one constructed fol-
lowing the recipe in ¢ 5.5.39. Thus consider a thus constructed f.n.s.
L-model of Q. € 5.5.39(a) tells us that the chosen £*-reduct modeling
Q™ must make € 5.5.39(d) possible to carry out. Thus to prove the facts,
for each of (a)-(d) we construct a suitable £*-model of Q" for which
€ 5.5.39(d) is impossible to carry out.”

* The non-standard part of each of these models were found by automated search

procedures. These search procedures are developed and described in Ch. 6, where I
also provide Python implementations of them.
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(a) We have the following concretization of N :

A=A + A,
Ay ={a11}
Ay ={az1}
aj; +ni=ag, az1+n:=ay; (nstandard)
n+ap;i=ag, n+ay; i=ay; (n standard)
a;1+tay;=0ay,; a1 tag; =as;
Qg1 +ta11=0g; ag1+ag1 =0aq;-

The output when running the Python script in § 5.D verifies that
this is a commutative and associative £*-model of Q* for which
€ 5.5.39(d) is not possible to carry out.

(b) We have the following concretization of N :

A=A + A,
Ay ={a11}
Ay i={az1}
aj;+ni=ag, a1 +mn:=ay; (n standard)
n+a;i=ag, n+ay; i=ay; (n standard)
a;1+a11=0ag; a;1tag;=ag;
Qg1 +ta11 =0y, ap1+tag1 =0as;-

The output when running the Python script in § 5.D verifies that
this is a commutative non-associative £*-model of QT for which
€ 5.5.39(d) is not possible to carry out.

(c) We have the following concretization of N :

A=A+ A, + A
A= {a'l,l: 01,2}
Ay = {a'2,1}
Az = {a3,1}
a1 +n:=ay, if n even, aq9 if n odd

=n+ag, (n standard)
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@12 +n:=a;,if neven, a;; if n odd

=n+a, (n standard)
ay1+ni=ay; =n+ay; (n standard)
az;+ni=az; =n+az; (n standard)

aj1+ta;;=ag
a12ta;;=ag,;
Gg1ta11 =09,
az1+ta;;:=as;
a11+a12 =0y
12+ 0a10 =019
Qg1 ta12 =09,
az1+ta19:=2as;
a;1+ag1=ag;
a12+t0ag1 =0y
Qg1+t a1 =09
az1+tag1:=20as;
@11+ 031 = as
a12+as; =ag;
Qg1+ a3y = ag;
a31 + Q31 = 0ag;.

The output when running the Python script in § 5.D verifies that

this is a non-commutative associative £*-model of QT for which
€ 5.5.39(d) is not possible to carry out.

(d) We have the following concretization of N :
A=A
Ay ={ay1, a1}
a;1+n:=a;; if neven, a;, if n odd
=n+ag, (n standard)
a15+n:=ay, if n even, a,; if n odd
=n+a, (n standard)

ap1+ta1;=a.
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12 +ta11 =02
aj1+ta1p=ag;
12 t0a12=0ay;.
The output when running the Python script in § 5.D verifies that

this is a non-commutative non-associative £*-model of Q* for which
€ 5.5.39(d) is not possible to carry out.

The complete and explicit definition of the
model from Example 5.4.29

We compute those additions not explicitly defined in Example 5.4.29,
continuing where we left off in the model construction recipe (q 5.4.28).

Recall that the model is a concretization of N, . We recall what we had
explicitly defined so far.

— LP-reduct:

A=A+ A,
A = {0«1,1»‘11,2}
Ay = {02,1, a2,2}

Sal,l =012

Sa1,2 =011

5‘12,1 = Qg2

Sazlz = a2’1 .

- n+a;_ for n standard and for 2 = 1and 1 = 2:

(f) n+4a;; =8 =a,;+n=a;; if neven, a,, if n odd.
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- a+a;_ for a non-standard and for : = 1and 72 = 2:

fa—y
[y
[y

G11+ay; =ag;
a1pta;1 =ap
Gp1+ta;1 =ag;

(111)
(121)
(211)
(221) a2t a11 =0z
(112)
(122)
(212)
(222)

[N
—_
[\

ap1+az1 =ag;
a12+tag1 =0y,
Gp1+taz1 =02

Qg2 +ta1 =0Qg;-

q¥5.B.3 Following the recipe (4 5.4.28), we use the equations in Fact 5.4.24 to
compute the remaining additions that involve non-standard numbers.
(The additions that involve only standard numbers are of course defined
as usual.)

—a;_+nfori= 1and¢= 2 and for n standard:

a1 +n==5"a,, (by Fact 5.4.24(a))

=a;; if n even, a;, if n odd

a;2+n =28, (ditto)

=a,;, if n even, a;; if n odd.

- n+a;, for n standard and for ¢ = 1 and 1 = 2:

n4a;;=5""(n+a;;) (by Fact 5.4.24(b))
=S(n+a;;)
=S5%a;, (by (1))
=S5"a;,

=a,;, if n even, a;; if n odd.

— a+a,, for a non-standard and for 2 = 1 and ¢ = 2:
We have

(1) ag; +a;0=S(ag; +a;1)
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by
agy+ a0 =S* (a4 a;,) (by Fact 5.4.24(b))
= S(ag; +ai1)
Thus:

aj1+as=95(a11 +ay,) (by (1))
= Sal,l (by (111)
=aQaz2

a1p+a1s=95(a1p+ay,) (by (1))
= Saq,z (by (121))
=a

az1+ais=95(a1 +ayy) (by (1))
= Sa2,1 (by (211))
= Qg2

aza+ays=95(a2 +ayy) (by (1))
= Sa2,2 (by (221))
=ag

aj1+azs =95(a11 +azy) (by (1))
= Sa2,2 (by (112))
=0y

a12+azs =9S(a12+asy) (by (1))
= Sa2,2 (by (122))
=0y

az1+ag =S8(az; +as1) (by (1))
= Sa2,1 (by (212))
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= Qg2
Azo+azs =9S(az2 +as1) (by (1))
=Say, (by (222))
= az2-
5B4 All in all, we have an f.n.s. £L*-model of Q¥ in the following concretiza-
tion of N, :
— LP-reduct:

A=A+ A4
A = {0«1,1»‘11,2}
Ay = {02,1, a2,2}

Sal,l =012

Sa1,2 =011

502,1 = Qg2

Sazo=ay;-

— For n and m standard:
n + m = the ordinary sum of n and m.
n+a;, for n standard and for ¢« = 1and 7 = 2:
n+a;; =a;; +n==S8";; =a;; ifn even, a;, if n odd

n+a;,=a;s+n=3S8"a;,=a,;,if n even, a;, if n odd.

— a + b for a and b non-standard:

a1 +a;; =ay; a11+tay1 =0ag9
a1ptap; =ap a12+ag1 =0y
Gp1+a;1 =ag; Gg1+ta1 =093
Qg2+t a1 =0ag2 Qg2+t a1 =093
ay1tai2=a; a11+a2 =20y
12 ta12=2a; 12+ 0822 =209
Gp1+ta12 =022 Q31+t Qo =g
Qg2+t Q12 =023 Qg2+ Qoo = Qgo-
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A Coq formalization verifying that
Example 5.5.41 provides a model of
Robinson arithmetic

The following Coq source type checks with Coq 8.20.1.
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Require Import Arith.
Definition models_Q_p
(M : Type) (OM : M) (S M: M->M
Prop
(forall x, S M x <> 0_M) (* (Q1) *)
/\
(forall x y, SMx =S My ->x=1y) (* (g2) *)
/\
(forall x, x = O_M \/ exists y, x = S_My). (* (§3) *)
Definition models_Q_add
(M : Type) (OM : M) (SM:M->M (add M : M->M->M
Prop
models_Q_p M O_M S_M
/\
(forall x, add_ M x 0O_M = x) (* (Q4)
*)
/\
(forall x y, add_ M x (S_.My) = S_M (add_ M x y)). (¥
(Q5) *)
Definition models_Q
M : Type)
(o_M : M)
(s_M T M > M)
(add M : M->M->M
(mult M : M -> M -> M)
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Prop

models_Q_add M O_M S_M add_M

/\

(forall x, mult M x O_M = 0O_M)
(* (Q6) *)

/\

(forall x y, mult_ M x (S_M y) = add_M (mult_M x y) x).
(x (Q7) *)

Fact nat_models_Q : models_Q nat 0 S plus mult.
Proof.

unfold models_Q. repeat split; auto.

induction x as [| x IH].

- left. reflexivity.

- destruct IH as [IH1 | IH2]; right; eauto.
Qed.

Inductive A : Type :=

| a1l : A
| a12 : A
| a21 : A
| a22 : A

Definition S_A (a : A) := match a with

| a1l => al2
| a12 => ailil
| a21 => a22
| a22 => a21
end.

Definition fns_N : Type := nat + A.
Definition O_N : fns N := inl O.
Definition S_N (a : fns_N) : fns_N := match a with

| inl n => inl (S n)
| inr a => inr (S_A a)
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end.

Fact fns_N_with_S_N_models_Q_p : models_Q_p fns_N O_N S_N.
Proof.
unfold models_Q_p. repeat split.
- intro o. destruct o as [n | al.
+ simpl. unfold O_N. injection. intros H2. inversion
H2.
+ unfold O_N. destruct a; simpl; intro H; inversion H.
- intros o p H. destruct «, PB.
+ simpl in H. injection H. auto.
+ repeat unfold S_N in H. destruct a; simpl; inversion

H.
+ repeat unfold S_N in H. destruct a; simpl; inversion
H.
+ destruct a, a0; auto.
* simpl in H. inversion H.
* simpl in H. inversion H.
* simpl in H. inversion H.
* simpl in H. inversion H.
* simpl in H. inversion H.
* simpl in H. inversion H.
* simpl in H. inversion H.
* simpl in H. inversion H.

- intros «. destruct o as [n | a].
+ destruct n as [In].
* left. auto.
* right. exists (inl n). reflexivity.
+ right. destruct a.

* exists (inr al2); reflexivity.
exists (inr all); reflexivity.
exists (inr a22); reflexivity.
exists (inr a21); reflexivity.

* ¥ %

Qed.

Definition add_N_ns_std (a : A) (n : nat) :=
match a with

| a1l => if Nat.even n then all else al2

| a12 => if Nat.even n then al2 else all
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| a21 => if Nat.even n then a2l else a22
| a22 => if Nat.even n then a22 else a21
end.

Definition add_N_std ns (n : nat) (a : A) : A :=
add_N_ns_std a n.

Definition add_N_ns ns (a b : A) :=
match a, b with
all, all => all
all, al2 => al2
all, a21 => a22
all, a22 => a21
al2, all => al2
al2, al2 => alil
al2, a21 => a22
al2, a22 => a21
a21, all => a21
a21, al2 => a22
a21, a21 => a21
a21, a22 => a22
a22, all => a22
a22, al2 => a21
a22, a21 => a21
a22, a22 => a22
end.

Definition add_N (o B : fns_N) : fns_N :=
match o, B with

| inl n, inl m => inl (n+m)

| inl n, inr a => inr (add_N_std_ns n a)

| inr a, inl n => inr (add_N_ns_std a n)

| inr a, inr b => inr (add_N_ns_ns a b)
end.

Lemma fns _N_with_S _N_add_N_models_Q4 : forall (« : fns_N),
add_N o (inl 0) = «a.
Proof.
destruct o as [n | a].
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5 Finitely non-standard models of Robinson arithmetic

+ simpl. rewrite <- plus_n_0. reflexivity.
+ simpl. destruct a; reflexivity.
Qed.

Lemma fns N_with_S _N_add_N_models_Q5_ns_std
forall (a : A) (n : nat), add_ N ns_std a (S n) = S_A
(add_N_ns_std a n).
Proof.
intros a n.
unfold add_N_ns_std.
remember (Nat.even n ) as n_even eqn:eq_n_even.
remember (Nat.even (S n)) as S_n_even eqn:eq_S_n_even.
destruct n_even; destruct S_n_even.
- absurd (true = Nat.even (S n)).
+ symmetry in eq n_even, eq_S_n_even.
rewrite Nat.even_spec in eq_n_even, eq_S_n_even.
rewrite Nat.Even_succ in eq_S_n_even.
apply (Nat.Even_0dd_False n eq_n_even) in
eq_S_n_even.
auto.
+ auto.
- destruct a; reflexivity.
- destruct a; reflexivity.
- absurd (false = Nat.even (S n)).
+ symmetry in eq n_even, eq_S_n_even.
rewrite <- eq_S_n_even in eq_n_even.
rewrite Nat.even_succ in eq_n_even, eq_S_n_even.
rewrite <- Nat.negb_odd in eq_n_even.
rewrite eq_S_n_even in eq_n_even.
simpl in eq_n_even.
inversion eq_n_even.
+ auto.
Qed.

Fact fns_N_with_S_N_add_N_models_Q_add : models_Q_add
fns_ N O_N S_N add_N.
Proof.
unfold models_Q_add.
split; [apply fns_N_with_S_N_models_Q_p | 1].
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5 Finitely non-standard models of Robinson arithmetic

split.

- simpl. unfold O_N. apply
fns N _with_S_N_add_N_models_Q4.

- intros o f.

+ destruct o as [n | al; [destruct P as [m | a] |
destruct B as [n | bl].
* simpl. rewrite <- plus_n_Sm. reflexivity.

simpl. destruct a; simpl; destruct (Nat.even n);

reflexivity.

* simpl. rewrite <-
fns_N_with_S_N_add_N_models_Q5_ns_std.
reflexivity.

* simpl. unfold add_N_ns_ns. destruct a; destruct b;
reflexivity.

*

Qed.

Fixpoint it_add_right N (B o : fns_N) (n : nat) : fns_N :=
match n with

| 0 =>a«
| Sn =>add_N (it_add_right N p a n) B
end.

Definition mult_N ns_std (a : A) (n : nat) : fns_N :=
it_add_right_N (inr a) (inl O0) n.

Lemma fns_N_with_S_N_add_N_mult_N_models_ns
: forall (a : A), mult N ns_std a 0 = inl O.
Proof. intro a. unfold mult_N_ns_std. reflexivity. Qed.

Lemma mult_N_all fixpoint : forall (m : nat),
mult N ns_std all (S n) = inr aill.

Proof.
intro n. induction n as [|n IHn].
- reflexivity.
- change
(mult_N_ns_std all (S (S n)))
with

(add_N (mult_N_ns_std all (S n)) (inr all)).
rewrite IHn.
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5 Finitely non-standard models of Robinson arithmetic

reflexivity.

Lemma mult_N_a21_fixpoint : forall (n : nat),

mult N _ns_std a21 (S n) = inr a2i.

Proof.
intro n. induction n as [|n IHn].
- reflexivity.
- change

(mult_N_ns_std a21 (S8 (S n)))
with

(add_N (mult_N_ns_std a21 (S n)) (inr a21)).
rewrite IHn.
reflexivity.

Lemma mult_N_a22 fixpoint : forall (m : nat),

mult_N_ns_std a22 (S n) = inr a22.

Proof.
intro n. induction n as [|n IHn].
- reflexivity.
- change

(mult_N_ns_std a22 (S (S n)))
with

(add_N (mult_N_ns_std a22 (S n)) (inr a22)).
rewrite IHn.
reflexivity.

Lemma mult_N_al2_even_odd
: forall n : nat,

(Nat.Even (S n) -> mult_N_ns_std al2 (S n) =
/\
(Nat.0dd (S n) -> mult_N_ns_std al2 (S n) =
Proof.
intro n. induction n as [|n IHn].
- split.

+ intros H_even_1.
exfalso.
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5 Finitely non-standard models of Robinson arithmetic

rewrite <- Nat.even_spec in H_even_1.
rewrite Nat.even_1 in H_even_1.
inversion H_even_1.
+ reflexivity.
- split.
+ intros H_even_SSn.
destruct IHn as [_ IHn].
rewrite Nat.Even_succ in H_even_SSn.
specialize (IHn H_even_SSn).
change
(mult_N_ns_std a12 (S (S n)))
with
(add_N (mult_N _ns_std al2 (S n)) (inr al2)).
rewrite IHn.
simpl.
reflexivity.
+ intros H_odd_SSn.
destruct IHn as [IHn _].
rewrite Nat.0dd_succ in H_odd_SSn.
specialize (IHn H_odd_SSn).
change
(mult_N_ns_std al2 (S (S n)))
with
(add_N (mult_N_ns_std al2 (S n)) (inr al2)).
rewrite IHn.
simpl.
reflexivity.
Qed.

Lemma mult_N_al2_even
: forall n : nat,
n <> 0 -> Nat.Even n -> mult_N_ns_std al2 n = inr all.
Proof.
intro n. destruct n as [|n].
- intro H_O_neq_0O. exfalso. apply H_O_neq_ 0. reflexivity.
- intros _ H_even_Sn.
pose (mult_N_al2_even_odd n) as H. destruct H as [H _].
apply (H H_even_Sn).
Qed.
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5 Finitely non-standard models of Robinson arithmetic

Lemma mult N_al2 odd
: forall n : nat, Nat.0dd n -> mult_N_ns_std al2 n = inr
al2.
Proof.
intro n. destruct n as [In].
- intro H_odd_O.
rewrite <- Nat.odd_spec in H_odd_O.
rewrite Nat.odd_O in H_odd_O.
inversion H_odd_O.
- intros H_odd_Sn.
pose (mult_N_al2_even_odd n) as H. destruct H as [_ H].
apply (H H_odd_Sm).
Qed.

Lemma Sn_neq_O : forall n : nat, S n <> 0.
intros n. symmetry. apply Nat.neq_O_succ.
Qed.

Lemma fns_N_with_S_N_add_N_mult_N_models_Q7_ns_std
: forall (a : A) (n : nat),
mult_N ns_std a (S n) = add_ N (mult_N_ns_std a n)
(inr a).
Proof.
intro a. destruct a.
- destruct n as [[n].
+ reflexivity.
+ repeat rewrite mult_N_all_fixpoint. reflexivity.

- intro n.
destruct (Nat.Even_or_0dd (S n)) as [H_even_Sn |
H_odd_Sn].

+ rewrite (mult_N_al2_even (S n) (Sn_neq_0 n)
H_even_Sn).

rewrite Nat.Even_succ in H_even_Sn.
rewrite (mult_N_al2 odd n H_even_Sn).
simpl.
reflexivity.

+ rewrite (mult_N_al2 odd (S n) H_odd_Sn).
destruct n as [In].
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5 Finitely non-standard models of Robinson arithmetic

* simpl. reflexivity.
* rewrite Nat.0dd_succ in H_odd_Sn.
rewrite (mult_N_al2_even (S n) (Sn_neq O n)
H_odd_Sn).
simpl.
reflexivity.

- destruct n as [|n].

+
+

reflexivity.
repeat rewrite mult_N_a21_ fixpoint. reflexivity.

- destruct n as [|n].

+
+
Qed.

reflexivity.
repeat rewrite mult_N_a22_fixpoint. reflexivity.

Definition mult N_std ns (n : nat) (a : A) : A :=

match
| a11
| a21
| a12
| a22
end.

a with
=> alil
=> a21
> if Nat.even n then all else al2
> if Nat.even n then a2l else a22

Definition mult_ N ns ns (ab : A) : A :=

match
| al1l,
| a12,
| a21,
| a22,
| ali,
| a12,
| a21,
| a22,
| ali,
| a12,
| a21,
| a22,
| al1l,
| a12,
| a21,

a, b with
all => ailil
all => ailil
all => a21
all => a22
al2 => ailil
al2 => al2
al2 => a21
al2 => a22
a21 => ali
a21 => ailil
a2l => a21
a2l => a22
a22 => alil
a22 => al2
a22 => a21
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5 Finitely non-standard models of Robinson arithmetic

| a22, a22 => a22
end.

Lemma fns_N_with_S_N_add_N_mult_N_models_Q7_ns_ns
: forall (a b : A), mult N ns ns a (S_A b) = add_N_ns_ns
(mult_N_ns ns a b) a.
Proof.
intros a b; destruct a; destruct b; simpl; reflexivity.
Qed.

Definition mult_N (a B : fns_N) : fns_N :=
match o, B with

| inl n, inl m => inl (n*m)

| inl n, inr a => inr (mult_N_std_ns n a)

| inr a, inl n => (mult_N_ns_std a n)
| inr a, inr b => inr (mult_N_ns _ns a b)
end.

Fact fns_N_with_S_N_add_N_mult_N_models_Q
: models_Q fns_N O_N S_N add_N mult_N.
Proof.
unfold models_Q. split; [| split].
- apply fns_N_with_S_N_add_N_models_Q_add.
- intro o. destruct o as [n | al.
+ unfold mult_N. simpl. rewrite <- mult_n_0O.
reflexivity.
+ destruct a;
unfold mult_N; simpl; unfold mult_N_ns_std; simpl;
reflexivity.
- intros o f.
destruct o as [n | al; [destruct P as [m | al |
destruct B as [n | bl].
+ unfold add_N, mult_N. simpl. rewrite <- mult_n_Sm.
reflexivity.
+ destruct a.
* reflexivity.
* simpl. destruct (Nat.Even_or_0dd n) as [n_even |
n_odd].
{
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5 Finitely non-standard models of Robinson arithmetic

rewrite <- Nat.even_spec in n_even.
rewrite n_even. simpl. rewrite n_even.
reflexivity.
}
{
rewrite <- Nat.odd_spec in n_odd.
set (Nat.negb_odd n) as n_not_even.
rewrite n_odd in n_not_even. simpl in n_not_even.
rewrite <- n_not_even. simpl.
rewrite <- n_not_even. reflexivity.
}
* reflexivity.
* simpl. destruct (Nat.Even_or_0dd n) as [n_even

n_odd] .

{
rewrite <- Nat.even_spec in n_even.
rewrite n_even. simpl. rewrite n_even.
reflexivity.

}

{

rewrite <- Nat.odd_spec in n_odd.
set (Nat.negb_odd n) as n_not_even.
rewrite n_odd in n_not_even. simpl in n_not_even.
rewrite <- n_not_even. simpl.
rewrite <- n_not_even. reflexivity.
}
+ apply fns_N_with_S_N_add_N_mult_N_models_Q7_ns_std.
+ simpl. rewrite
fns N with_S_N_add N _mult_N _models Q7_ns_ns.
reflexivity.
Qed.
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§ 5.D Source of Python script referenced in
Proofs 5.5.43, and the output from
running it

§ 5.D.1 Source

1 |#! /usr/bin/env python3.13
s | # IMPORTS
s | import dataclasses

7 |from itertools import product
s |from typing import Final as F, NewType, Self, TypeAlias

12 |# NEWTYPES T_CORRECT_EQS AND T_INCORRECT_EQS

NewType('t_correct_eqgs', list[str])
NewType('t_incorrect_eqs', list[str])

14 t_correct_eqgs

15 t_incorrect_eqgs

19 |# DATA CLASS C_ELEMENT

20

a1 |@dataclasses.dataclass(frozen=True,kw_only=True)
22 class c_element:

2 ci : Flint] # cycle index

2 ri : F[int] # right index

2 def __post_init__(self) -> Nome:

2% assert self.ci >= 1, self.ci

27 assert self.ri >= 1, self.ri

28 def __repr__(self) -> str:

20 return f'a[{self.ci},{self.ri}]"

30

31

32
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5 Finitely non-standard models of Robinson arithmetic

# DATA CLASS C_CYCLE

Q@dataclasses.dataclass(frozen=True,kw_only=True)
class c_cycle:
ci : Flint]
length : F[int]
elements : F[tuple[c_element,...]] =
dataclasses.field(init=False)

def __post_init__(self) -> None:
assert self.ci >= 1, self.ci
assert self.length >= 1, self.length
elements : F[tuple[c_element,...]] =\

tuple(c_element(ci=self.ci,ri=ri) for ri in

range(1,self.length+1))
object.__setattr__(self,'elements',elements)

def element(self, ri: int) -> c_element:
assert ri <= self.length, (ri,self.length)
return self.elements[ri-1]

def S(self, a: c_element) -> c_element:
assert a.ci == self.ci, (a,self.ci)
assert a.ri <= self.length
if a.ri == self.length:
return self.elements[0]
else:
return self.elements[a.ri]

def P(self, a: c_element) -> c_element:

assert a.ci == self.ci, (a,self.ci)
assert a.ri <= self.length
if a.ri ==
return self.elements[-1]
else:

return self.elements[a.ri-2]

def it_S(self, a: c_element, iteratiomns: int) —>
c_element:
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5 Finitely non-standard models of Robinson arithmetic

def

def

# DATA C

if iterations < O:
return self.it_P(a,-iterations)

assert a.ci == self.ci, (a,self.ci)

assert a.ri <= self.length

return self.elements[(a.ri-1+iterations) %
self.length]

it_P(self, a: c_element, iterations: int) ->

c_element:

if iterations < O:
return self.it_S(a,-iterations)

assert a.ci == self.ci, (a, self.ci)

assert a.ri <= self.length

return self.elements[(a.ri-1-iterations) %
self.lengthl]

__repr__(self) -> str:
return \
f'A[{self.ci}]' +
\

= +

\

'{* + ', '".join(str(a) for a in self.elements)

+ I}l

LASS CYCLE STRUCTURE

@dataclasses.dataclass(frozen=True,kw_only=True,eq=False)

class c_cycle_structure:
cycle_lengths : F[tuple[int,...]]
cycles : Fltuplelc_cycle,...]]
elements : Fltuple[c_element,...]]
no_of_cycles : F[int]
size : Flint]
def __init__(self, *, cycle_lengths: tuplel[int,..

None:
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def

def

def

no_of_cycles : F[int] =
len(cycle_lengths)
cycles : Fltuplel[c_cycle,...]]
c_cycle(ci=ci,length=) for (ci, ) in
enumerate(cycle_lengths,1)

tuple(

)

elements : F[tuple[c_element,...]] = tuple(
a for c in cycles for a in c.elements

)

assert no_of_cycles >= 1

assert all( >= 1 for in cycle_lengths),
cycle_lengths

assert \
all(1 >= 2 for 1,2 in

zip(cycle_lengths,cycle_lengths[1:])),\

cycle_lengths

ob-

ject.__setattr__(self,'cycle_lengths',cycle_len
object.__setattr__(self,'cycles', cycles)
object.__setattr__(self,'elements', elements)

object.__setattr__(self, 'no_of_cycles',
no_of_cycles)

object.__setattr__(self, 'size',
len(self.elements))

cycle(self, ci: int) -> c_cycle:

assert 1 <= ci <= self.no_of_cycles,
(ci,self.no_of_cycles)

return self.cycles[ci-1]

element (self, *, ci: int, ri: int) -> c_element:
assert 1 <= ci <= self.no_of_cycles,
(ci,self.no_of_cycles)
assert \
1 <= ri <= self.cycles[ci-1].length,\
(ci, ri, self.cycles[ci-1].length)
return self.cycles[ci-1].elements[ri-1]

S(self, a: c_element) -> c_element:
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def

def

def

def

assert a.ci <= self.no_of_cycles,
(a,self.no_of_cycles)
return self.cycles[a.ci-1].S(a)

P(self, a: c_element) -> c_element:

assert a.ci <= self.no_of_cycles,
(a,self.no_of_cycles)

return self.cycles[a.ci-1].P(a)

it_S(self, a: c_element, iterations: int) ->

c_element:

assert a.ci <= self.no_of_cycles,
(a,self.no_of_cycles)

return self.cycles[a.ci-1].it_S(a,iterations)

it_P(self, a: c_element, iterations: int) ->

c_element:

assert a.ci <= self.no_of_cycles,
(a,self.no_of_cycles)

return self.cycles[a.ci-1].it_P(a,iterations)

__repr__(self) -> str:
return \
A =
+\
'+'.join(f'A[{ci}]"' for ci in (c.ci for ¢ in
self.cycles)) +\
'\Il'
+\
'"\n'.join(str(cycle) for cycle in self.cycles)
+\
|\nv
+\
"\n'.join(
'\n'.join(f'S{a} = {self.S(a)}' for a in
cycle.elements)
for cycle in self.cycles
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# TYPE ALIAS T_PLUS

ta_plus : TypeAlias =
dict[tuple[c_element,c_element],c_element]

# C_PLUS_REDUCT

@dataclasses.dataclass(frozen=True, kw_only=True)
class c_plus_reduct(c_cycle_structure):

_plus : F[ta_plus]

def __init__(self, *, cycle_lengths: tuple[int,...],
plus: ta_plus) -> Nome:
super() .__init__(cycle_lengths=cycle_lengths)
assert \

set(plus.keys()) == set(product(self.elements,

repeat=2)),\

(set(plus.keys()), set(product(self.elements,
repeat=2)))

object.__setattr__(self, '_plus', plus)

@classmethod
def from_cycle_structure(
cls,
cycle_structure : c_cycle_structure,
plus : ta_plus,
) —> Self:
return

cls(cycle_lengths=cycle_structure.cycle_lengths

plus=plus)

def plus(self, a: c_element, b: c_element) ->
c_element:
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def

assert a.ci <= self.no_of_cycles, (a.ci,
self .no_of_cycles)
assert b.ci <= self.no_of_cycles, (b.ci,

self .no_of_cycles)

assert a.ri <= self.cycle(a.ci).length, (a.ri,
self.cycle(a.ci).length)

assert b.ri <= self.cycle(b.ci).length, (b.ri,
self.cycle(b.ci) .length)

return self._plus[(a,b)]

it_right_plus(
self, *x, add_to: c_element, add_with: c_element,
iterations: int,

) —> c_element:

def

assert iterations >= 0, iterations
if iterations ==

return add_to
return self.it_right_plus(

add_to = self.plus(add_to,add_with),
add_with = add_with,
iterations = iterations-1,
)
__repr__(self) -> str:
return \
super().__repr__() +
\
1 \nl +
\
"\n'.join(
"\n'. join(

f'{a}+{b} = {self.plus(a,b)}'
for b,a in product(cycle.elements,
self.elements)

)

for cycle in self.cycles
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# FUNCTION MODELS_Q5

def models_Q5(pr : c_plus_reduct) ->
tuple[t_correct_eqs,t_incorrect_eqs]:
correct_eqgs : t_correct_eqs = t_correct_eqs([])
incorrect_eqs : t_incorrect_eqs = t_incorrect_eqs([])
for o in pr.elements:
for B in pr.elements:
a_SB : F[c_element] = pr.plus(wa, pr.S(B))
S_ap : Flc_element] = pr.S(pr.plus(o,p))
eq : str = £'{a3+S({B}) =
{o}+{pr.s(P)} = {a_SP}'
if o_SPp == S_af:
eq += ' ="
else:
eq += £' =/{S_op} ="'
eq += £'S({pr.plus(a,P)}) = S({a}+{p})'
if o_SPp == S_af:
correct_eqs.append(eq)
else:
incorrect_eqs.append(eq)
return (correct_eqs,incorrect_eqs)

# FUNCTION IS_COMMUTATIVE

def is_commutative(pr: c_plus_reduct) ->
tuple[t_correct_eqs,t_incorrect_eqs]:
correct_eqs : t_correct_eqs = t_correct_eqs([])
incorrect_eqs : t_incorrect_eqs = t_incorrect_eqs([])
for o in pr.elements:
for f in pr.elements:

of : Flc_element] = pr.plus(a,p)

Ba : Flc_element] = pr.plus(B,o)

eq : str = f'{a}+{p} = {op}'

if o == Pa:

eq += ' ="
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5 Finitely non-standard models of Robinson arithmetic

else:

eq += ' =/{Ba} =

eq += f£'{B}+{o}'
if of == Pa:

correct_eqs.append(eq)

else:

incorrect_eqs.append(eq)

return (correct_eqs,incorrect_eqs)

# FUNCTION IS_ASSOCIATIVE

def is_associative(pr: c_plus_reduct) ->
tuple[t_correct_eqs, t_incorrect_eqs]:

correct_eqgs

: t_correct_egs t_correct_eqs([])

incorrect_eqs : t_incorrect_eqs = t_incorrect_eqs([])

for o in pr.

elements:

for B in pr.elements:

for

Y in pr.elements:

of : Flc_element] = pr.plus(a,P)
of_y : Flc_element] = pr.plus(of,y)
By : Flc_element] = pr.plus(p,Y)

a_Py : F[c_element] = pr.plus(e,py)
eq : str = £' ({a3+{BH)+{y} = {aPpI+{y} =
{ap_v}'
if of_y == o_Py:
eq += ' ="
else:
eq += £' =/{a_Py} ="
eq += f'{o}+{By} = {a}+({p}I+{yH"
if of_y == o_Py:
correct_eqs.append(eq)
else:
incorrect_eqgs.append(eq)

return (correct_eqs,incorrect_eqs)
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5 Finitely non-standard models of Robinson arithmetic

# FUNCTION IS_EXPANDABLE

def is_expandable(pr: c_plus_reduct) ->
tuple[t_correct_eqgs,t_incorrect_eqs]:

correct_eqgs . t_correct_egs = t_correct_eqs([])
incorrect_eqs : t_incorrect_eqs = t_incorrect_eqs([])

for a in pr.elements:
for ci in range(l,pr.no_of_cycles+1):
for b in pr.elements:

a_plus_b_cycle_length_times : F[c_element]

= pr.it_right_plus(

add_to=a,add_with=b,iterations=pr.c

)
alternative_found : F[bool] = b ==
a_plus_b_cycle_length_times
eq : str =\
f'{a}x{pr.element(ci=ci,ri=1)} {b}'
+

(' = ' if alternative_found else ' =/')

+
'('*pr.cycle(ci) .length
+
f'{a}+'
for _ in range(pr.cycle(ci).length-1):
eq += f'{b})+'
eq += £'{b})’
if alternative_found:
correct_eqs.append(eq)
else:
incorrect_eqs.append(eq)
return (correct_eqs,incorrect_eqs)

# MAIN

## OUR PLUS REDUCTS
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5 Finitely non-standard models of Robinson arithmetic

### ELEMENTS USED

all : F[c_element] = c_element(ci=1,ri=1)
al2 : F[c_element] = c_element(ci=1,ri=2)
a21 : Flc_element] = c_element(ci=2,ri=1)
a31 : F[c_element] c_element (ci=3,ri=1)

### PR_NOT_COMMUTATIVE_EXPANDABLE

# this one just to test that function is_expandable works
as expected

pr_not_commutative_expandable : F[c_plus_reduct] =
c_plus_reduct(
cycle_lengths
plus

(2,),
{
(a11,a11): ailil,
(a12,a11): ailil,
(a11,a12): al2,
(a12,a12): al2,

### PR_COMMUTATIVE_ASSOCIATIVE

pr_commutative_associative : F[c_plus_reduct] =
c_plus_reduct(
cycle_lengths = (1,1),
plus {
(al1,a11): ailil,
(a21,a11): a21,
(al1,a21): a21,
(a21,a21): ailil,

### PR_COMMUTATIVE_NOT_ASSOCIATIVE

pr_commutative_not_associative : F[c_plus_reduct] =
c_plus_reduct(
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5 Finitely non-standard models of Robinson arithmetic

1,1,
{
(al1,al11): a21,
(a21,al11): aill,
(al11,a21): ali,
(a21,a21): ailil,

cycle_lengths
plus

### PR_NOT_COMMUTATIVE_ASSOCIATIVE

pr_not_commutative_associative : F[c_plus_reduct] =

c_plus_reduct(

cycle_lengths = (2,1,1),

plus = {
(a11,a11): ailil,
(a12,a11): ailil,
(a21,a11): a21,
(a31,a11): a31,
(a11,a12): al2,
(a12,a12): al2,
(a21,a12): a21,
(a31,a12): a31,
(a11,a21): a21,
(a12,a21): a2i,
(a21,a21): a21,
(a31,a21): a31,
(a11,a31): a31,
(a12,a31): a31,
(a21,a31): a31,
(a31,a31): a21,

### PR_NOT_COMMUTATIVE_NOT_ASSOCIATIVE
pr_not_commutative_not_associative : F[c_plus_reduct] =

c_plus_reduct(
cycle_lengths = (2,),
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5 Finitely non-standard models of Robinson arithmetic

plus ={
(al1,a11): al2,
(a12,a11): al2,
(a11,a12): all,
(a12,a12): ali,

## FUNCTION CHECK_PR

def check_pr(pr: c_plus_reduct) -> None:
print (pr)
print ()
print('Models (Q5)7',end=' ')
models_Q5_res :
F[tuple[t_correct_eqs,t_incorrect_eqs]] =\
models_Q5 (pr)
models_Q5_correct_eqgs : Flt_correct_egs]
=\
models_Q5_res[0]
models_Q5_incorrect_eqs : F[t_incorrect_egs]
=\
models_Q5_res[1]
if models_Q5_incorrect_eqs != []:
print('No, a counterexample:')
print (models_Q5_incorrect_eqs[0])
else:
print('Yes:"')
for correct_eq in models_Q5_correct_eqgs:
print (correct_eq)
print ()
print('Is expandable?',end=' ")
is_expandable_res :
F[tuple[t_correct_eqs,t_incorrect_eqgs]] = \
is_expandable (pr)
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5 Finitely non-standard models of Robinson arithmetic

is_expandable_correct_eqs : F[t_correct_egs]
=\
is_expandable_res[0]
is_expandable_incorrect_eqs : F[t_incorrect_egs]
=\
is_expandable_res[1]
if is_expandable_incorrect_eqgs != []:
print('No:")
for incorrect_eq in is_expandable_incorrect_egs:
print(incorrect_eq)
else:
print('Yes, alternatives:')
for correct_eq in is_expandable_correct_eqgs:
print(correct_eq)
print ()
print('Is commutative?',end=' ')
is_commutative_res :
F[tuple[t_correct_eqgs,t_incorrect_eqs]] = \
is_commutative (pr)
is_commutative_correct_eqs : F[t_correct_eqs]
=\
is_commutative_res[0]
is_commutative_incorrect_eqs : F[t_incorrect_egs]
=\
is_commutative_res[1]
if is_commutative_incorrect_eqgs != []:
print('No, a counterexample:')
print (is_commutative_incorrect_eqs[0])
else:
print('Yes:')
for correct_eq in is_commutative_correct_eqgs:
print(correct_eq)
print ()
print('Is associative?',end=' ')
is_associative_res :
Fltuple[t_correct_eqgs,t_incorrect_eqs]] = \
is_associative(pr)
is_associative_correct_eqs : F[t_correct_eqgs]

-\
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5 Finitely non-standard models of Robinson arithmetic

is_associative_res[0]
is_associative_incorrect_eqs : F[t_incorrect_egs]
=\
is_associative_res[1]
if is_associative_incorrect_eqs != []:
print('No, a counterexample:')
print(is_associative_incorrect_eqs[0])
else:
print('Yes:"')
for correct_eq in is_associative_correct_eqgs:
print(correct_eq)

## IF __NAME__ == '__MAIN__':

if

__hame == ' main__

print ('A non-commutative expandable non-standard
part:')

print ()

check_pr(pr_not_commutative_expandable)

print ()

print('---")

print ()

print('A commutative associative non-expandable
non-standard part:')

print ()

check_pr(pr_commutative_associative)

print ()

print('---")

print ()

print('A commutative non-associative non-expandable
non-standard part:')

print ()

check_pr(pr_commutative_not_associative)

print ()

print('---")

print ()

print ('A non-commutative associative non-expandable
non-standard part:')
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500 check_pr(pr_not_commutative_associative)

501 print ()

502 print('---")

503 print O

504 print('A non-commutative non-associative
non-expandable non-standard part:')

505 print ()

506 check_pr(pr_not_commutative_not_associative)

§ 5.D.2 Output

Running Python 3.13 with the above source as input produces the fol-
lowing output.

1 |A non-commutative expandable non-standard part:

3 A = A[1]

« |A[1] = {al1,1], al1,2]}
s [Sal1,1] = al1,2]

¢ |Sal1,2] = al1,1]

+ |all1,1]+a[1,1] = al1,1]
s |al1,2]+al1,1] = a[1,1]
o |all1,1]+al1,2] = al1,2]
v |all,2]+al1,2] = al1,2]

12 |Models (Q5)? Yes:

1 |al1,1]+S(al1,1]) = al1,1]+a[1,2] = a[1,2] = S(al[1,1]) =
S(al1,1]+al1,11)

v |all,11+S8(al1,2]) = al1,1]1+al1,1] = al1,1] = S(al1,2]) =
S(al1l,1]1+al1,21)

s |al[1,2]+S(al1,1]) = al[1,2]+a[1,2] = a[1,2] = S(al1,1]) =

S(al1,2]+al1,1])
s |al[1,2]+S(al1,2]) = al1,2]+al1,1]
S(al1,2]+al1,2])

al1,1] = s(alt1,2])

18 Is expandable? Yes, alternatives:
v |all,1I1xal1,1] al1,1] = ((al1,1]+al1,1])+al1,1])
» |all,1]xal1,1] al1,2] = ((al1,1]+al1,2]1)+al1,2])
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5 Finitely non-standard models of Robinson arithmetic

al1,2]xal1,1] al1,1]
al[1,2]xal1,1] al1,2]

((al1,2]+al1,1])+al1,1])
((alt1,2]+al1,2])+al1,2])

Is commutative? No, a counterexample:
al1,1]+al1,2] = al1,2] =/al1,1] = a[1,2]+a[1,1]

Is associative? Yes:
(al[1,1]+al1,1])+a[1,1] = a[1,1]+a[1,1] = a[1,1] =
al1,1]+af[1,1] = al1,1]+(al1,1]+al1,1])
(al1,1]+al1,1])+al1,2] = al1,1]+al1,2] = a[1,2] =
al1,1]+a[1,2] = a[1,1]1+(al1,1]+al1,2])
(al1,1]+a[1,2])+al1,1] = a[1,2]+a[1,1] = a[1,1] =
al1,1]+al1,1] = a[1,1]+(al1,2]+al1,1])
(al1,1]+al1,2])+al1,2] = a[1,2]+al1,2] = al1,2] =
al1,1]+a[1,2] = al1,1]+(al1,2]+a[1,2])
(al1,2]+al1,1])+al1,1] = a[1,1]+a[1,1] = a[1,1] =
al1,2]+al1,1] = a[1,2]+(al1,1]+al1,1])
(al1,2]+al1,1])+al1,2] = al1,1]+al1,2] = a[1,2] =
a[1,2]+a[1,2] = a[1,2]+(al1,1]+a[1,2])
(al1,2]+al1,2])+al1,1] = al1,2]+al1,1] = al1,1] =
al1,2]+al1,1] = a[1,2]+(al1,2]+al1,1])
(a[1,2]+a[1,2])+a[1,2] = a[1,2]+a[1,2] = a[1,2] =
a[1,2]+a[1,2] = a[1,2]+(a[1,2]+a[1,2])

A commutative associative non-expandable non-standard
part:

A = A[1]+A[2]

A[1] = {al1,11}
Al2] = {a[2,1]}
Sa[l1,1] = a[1,1]
Sa[2,1] = a[2,1]

al1,1]+al1,1] = al1,1]
al2,1]+al1,1] = a[2,1]
al1,1]+al2,1] = a[2,1]
al2,1]+al2,1] = a[1,1]
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Models (Q5)7 Yes:

al1,1]1+8(al1,1]) = al1,1]1+al1,1] = a[1,1] = S(al1,1])
S(al1,1]+af1,1])

al1,1]1+S(al2,1]) = al[1,1]+a[2,1] = a[2,1] = S(al2,1])
S(al1,1]+a[2,1])

al2,1]+s(al1,1]) = a[2,1]+a[1,1] = a[2,1] = S(a[2,1])
S(al2,1]+a[1,1])

al[2,1]+S8(al2,1]) = a[2,1]+al[2,1] = a[1,1] = S(al1,1])
S(al2,1]1+al2,1])

Is expandable? No:

al2,11xal1,1] al1,1] =/(al2,1]+al1,1])

al2,1]xal1,1] al[2,1] =/(al2,1]1+a[2,1])

al2,1]1xal[2,1] al1,1] =/(al2,1]1+al1,1])

al2,11xal[2,1] al2,1] =/(al2,1]1+a[2,1])

Is commutative? Yes:

al1,1]+al1,1] = a[1,1] = al1,1]+a[1,1]

al1,1]+a[2,1] = a[2,1] = a[2,1]+a[1,1]

al[2,1]+a[1,1] = a[2,1] = al[1,1]+a[2,1]

al2,1]+a[2,1] = a[1,1] = al[2,1]+a[2,1]

Is associative? Yes:

(al1,1]+al1,1])+al1,1] = al1,1]+al1,1] = a[1,1] =
al1,1]+al1,1] = al1,1]+(al1,1]+al1,1])

(al1,1]+al1,1])+a[2,1] = a[1,1]+a[2,1] = a[2,1] =
al1,1]1+a[2,1] = a[1,1]1+(al1,1]1+al2,1])

(al1,1]+al2,1])+al1,1] = a[2,1]+al1,1] = a[2,1] =
al1,1]+al2,1] = al[1,1]1+(al2,1]+al1,1])

(al1,1]+al2,1])+a[2,1] = a[2,1]+a[2,1] = al1,1] =
al1,1]1+al1,1] = a[1,1]+(al[2,1]+a[2,1])

(al[2,1]+a[1,1])+al1,1] = a[2,1]+a[1,1] = a[2,1] =
al2,1]+a[1,1] = a[2,1]+(a[1,1]+al1,1])

(al[2,1]+al1,1])+al2,1] = a[2,1]+a[2,1] = a[1,1] =
al2,1]+al[2,1] = a[2,1]+(al1,1]+a[2,1])

(al2,11+al2,1])+al1,1] = al1,1]+al1,1] = a[1,1] =
al2,1]1+a[2,1] = a[2,1]1+(a[2,1]+al1,1])

(a[2,1]+a[2,1])+a[2,1] = a[1,1]+a[2,1] = a[2,1] =

al2,1]+al1,1] = a[2,1]+(al2,1]+a[2,1])
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5 Finitely non-standard models of Robinson arithmetic

A commutative non-associative non-expandable non-standard
part:

A = A[1]+A[2]

Af1] = {al1,11}

Ar2] = {al2,1]1}
Sal1,1] = a[1,1]
Sa[2,1] = a[2,1]
al1,1]+al1,1] = a[2,1]

al[2,1]+al1,1] = a[1,1]
al1,1]+a[2,1] = a[1,1]
al[2,1]+al[2,1] = a[1,1]

Models (Q5)7 Yes:

al1,1]1+8(al1,1]) = al1,1]1+al1,1] = a[2,1] = S(al2,1])
S(al1l,1]+af1,11)

al1,11+8(al2,1]) = al1,1]1+a[2,1] = a[1,1]
S(al1,1]+a[2,1])

al[2,1]+S(al1,1]) = a[2,1]+al1,1]
S(al2,1]+al1,11)

al2,1]1+8(al2,1]) = a[2,1]+a[2,1]
S(al2,1]1+al2,11)

S(al1,11)

al1,1] = s(alt,1D)

al1,1] S(al1,11)

Is expandable? No:

al1,11xal1,1] al1,1] =/(al1,1]1+al1,1])
al[1,1]1xal1,1] al[2,1] =/(al1,1]1+al[2,1])
al1,1]1xal2,1] al1,1] =/(al1,1]+al1,1])
al1,11xal2,1] al2,1] =/(al1,1]1+a[2,1])
al[2,1]xal[1,1] al[2,1] =/(al2,1]+a[2,1])
al2,1]1xal2,1] al[2,1] =/(al2,1]+a[2,1])

Is commutative? Yes:

al1,1]+al1,1] = a[2,1] = al[1,1]+a[1,1]
al1,1]+a[2,1] = a[1,1] = a[2,1]+a[1,1]
al[2,1]+al1,1] = a[1,1] = al1,1]+a[2,1]
al2,1]+a[2,1] = a[1,1] = a[2,1]+a[2,1]
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5 Finitely non-standard models of Robinson arithmetic

Is associative? No, a counterexample:
(al1,11+af1,1])+al2,1] = al2,1]+a[2,1] = al1,1] =/al2,1]
al1,1]1+a[1,1] = a[1,1]1+(al1,1]+al[2,1])

A non-commutative associative non-expandable non-standard
part:
A = A[11+A[2]+A[3]

Af1] = {al1,1], al1,2]}
Ar2] = {al2,11}

A[3] = {al3,1]1}
Sal1,1] = a[1,2]
Sal1,2] = a[1,1]
Sa[2,1] = a[2,1]
Sa[3,1] = a[3,1]
al1,1]+al1,1] = a[1,1]
al1,2]+al1,1] = al1,1]
al2,1]+al1,1] = a[2,1]
al[3,1]+al1,1] = a[3,1]
al1,1]+al1,2] = a[1,2]
al1,2]+al1,2] = al[1,2]
al[2,1]+al1,2] = a[2,1]
al[3,1]+al1,2] = a[3,1]
al1,1]+al[2,1] = al[2,1]
al1,2]+al2,1] = a[2,1]
al[2,1]+al2,1] = a[2,1]
al[3,1]+al2,1] = a[3,1]
al1,1]+al[3,1] = a[3,1]
al1,2]+al[3,1] = a[3,1]
al[2,1]+al3,1] = a[3,1]

al[3,1]+al3,1] = a[2,1]

Models (Q5)7? Yes:

al1,1]1+8(al1,1]) = al1,1]+al[1,2]
S(al1l,1]+al1,1])

al1,1]+S(al1,2]) = al1,1]+al1,1]
S(al1,1]+al1,2])

al1,2] S(al1,11)

al1,1] = s(alt,2D)
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5 Finitely non-standard models of Robinson arithmetic

al1,1]+S(al2,1])

S(al1,1]+al2,

al1,1]1+s(al3,11)

S(al1,1]+al3,

al1,2]+S(al1,1])

S(al1,2]+al1,

al1,2]+s(al1,2])

S(al1,2]+al1,

al1,2]1+s(al2,11)

S(al1,2]+al2,

a[1,2]+s(al3,1])

S(al1,2]+al3,

al[2,1]1+s(al1,11)

S(al2,1]+al1,

al2,1]1+s(al1,21)

S(al2,1]+al1,

al[2,1]+S(al2,1])

S(al2,1]+al2,

al[2,1]1+s(al3,11)

S(al2,1]+al3,

a[3,1]1+S(al1,1])

S(al3,1]+al1,

al3,1]1+s(al1,2])

S(al3,1]+al1,

al3,1]1+s(al2,11)

S(al3,1]1+a[2,

al3,1]1+s(al3,1])

S(al3,1]+al3,

= a[1,1]+a[2,1]
11)
= a[1,1]+a[3,1]
11)
= al1,2]+a[1,2]
11)
= al1,2]+al1,1]
21)
= a[1,2]+a[2,1]
1)
= a[1,2]+a[3,1]
11
= a[2,1]+a[1,2]
11)
= a[2,1]+a[1,1]
2])
= a[2,1]+a[2,1]
11
= a[2,1]+a[3,1]
11)
= a[3,1]+al[1,2]
11)
= a[3,1]+al1,1]
21)
= a[3,1]+a[2,1]
1)
= a[3,1]+al[3,1]
11

Is expandable? No:

al[1,1]xal1,1]

al[3,1]

al2,1]
a[3,1]
al1,2]
al1,1]
al2,1]
al3,1]
al2,1]
al2,1]
al2,1]
a[3,1]
a[3,1]
a[3,1]
a[3,1]

al2,1]

S(al2,11)
S(al3,11)
S(al1,11)
S(al1,2])
S(al2,1])
S(al3,1])
S(al2,1])
S(al2,1])
S(al2,1])
S(al3,1])
S(al3,11)
S(al3,11)
S(al3,1])

S(al2,1])

=/((al[1,1]+a[3,1])+a[3,1])

al1,2]xal1,1] al3,1] =/((al1,2]+a[3,1])+a[3,1])
al2,1]xal1,1] al1,1] =/((al2,1]+al1,1])+al1,1])
al2,1]xal1,1] al1,2] =/((al[2,1]+a[1,2])+a[1,2])
al2,1]xa[1,1] al3,1] =/((al[2,1]+a[3,1])+a[3,1])
al2,1]1xal[2,1] al1,1] =/(al2,1]1+al1,1])
al2,11xa[2,1] al1,2] =/(al2,1]+a[1,2])
al2,1]1xa[3,1] al1,1] =/(al2,1]+al1,1])
al2,11xa[3,1] al1,2] =/(al2,1]+a[1,2])
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5 Finitely non-standard models of Robinson arithmetic

al3,1]xal1,1]
al3,1]xal1,1]
a[3,1]1xal1,1]
a[3,1]xa[2,1]
al[3,1]1xal[2,1]
al3,11xa[2,1]
al3,1]xal2,1]
al[3,1]xal3,1]
a[3,1]1xa[3,1]
al[3,1]xa[3,1]
al3,11xa[3,1]

Is commutative?

al1,1]+al1,2]

Is associative?
(a[1,1]+a[1:1])+a[1’1]

al1,1] =/((al3,11+al1,1])+al1,1])
al1,2] =/((al3,1]+a[1,2])+al1,2])
al2,1] =/((al3,1]+a[2,1])+a[2,1])
al1,1] =/(al3,1]1+al1,1]1)
al1,2] =/(al3,1]+a[1,2])
a[2,1] =/(al3,1]+a[2,1])
al[3,1] =/(al3,1]1+a[3,1]1)
al1,1] =/(al3,1]1+al1,1]1)
al1,2] =/(al3,1]1+a[1,2])
al2,1] =/(al3,1]+a[2,1])
a[3,1] =/(al3,1]+a[3,1])

No, a counterexample:
al1,2] =/al1,1] = a[1,2]+a[1,1]

Yes:
= a[1,1]+a[1,1] = a[1,1] =

al1,1]+al1,1] = al[1,1]+(al1,1]+al1,1])
(al1,1]1+al1,1])+al1,2] = al1,1]+a[1,2] = a[1,2] =
al1,1]+a[1,2] = al1,1]+(al1,1]+a[1,2])
(al1,1]+al1,1])+a[2,1] = a[1,1]+a[2,1] = a[2,1] =
al1,1]+a[2,1] = al[1,1]+(al1,1]+a[2,1])
(al1,1]+al1,1])+al3,1] = al1,1]+al3,1] = al[3,1] =
al1,1]+al[3,1] = a[1,1]+(al1,1]+a[3,1])
(al1,1]+al1,2])+al1,1] = al1,2]+al1,1] = al1,1] =
al1,1]+a[1,1] = a[1,1]+(al1,2]+a[1,1])
(al1,1]+a[1,2])+a[1,2] = a[1,2]+a[1,2] = a[1,2] =
a[1,1]+a[1,2] = a[1,1]1+(a[1,2]+a[1,2])
(al1,1]+al1,2])+al2,1] = al1,2]+a[2,1] = a[2,1] =
al1,1]+a[2,1] = al1,1]+(al1,2]+a[2,1])
(al1,1]1+al1,2]1)+al3,1] = al1,2]+al3,1] = al3,1] =
al1,1]1+a[3,1] = a[1,1]1+(al1,2]+al3,1])
(al1,1]+a[2,1])+al1,1] = a[2,1]+a[1,1] = a[2,1] =
al1,1]+a[2,1] = al[1,1]1+(al2,1]+al1,1])
(al1,1]1+a[2,1])+al1,2] = al[2,1]1+al1,2] = a[2,1] =
al1,1]+a[2,1] = al1,1]+(al[2,1]+a[1,2])
(al1,1]+a[2,1])+a[2,1] = a[2,1]+a[2,1] = a[2,1] =
al1,1]1+a[2,1] = a[1,1]1+(a[2,1]1+a[2,1])
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(al1,1]+al[2,1])+a[3,1] = a[2,1]+a[3,1] = a[3,1] =
al1,1]+a[3,1] = al[1,1]1+(al2,1]1+al[3,1])
(al1,11+al3,1]1)+al1,1] = al3,1]+al1,1] = al[3,1] =
al1,1]+a[3,1] = al1,1]+(al3,1]+al[1,1])
(al1,1]+a[3,1])+al1,2] = a[3,1]+a[1,2] = a[3,1] =
al1,1]+a[3,1] = al[1,1]+(al3,1]+a[1,2])
(al1,1]+al3,1])+al2,1] = a[3,1]+al[2,1] = a[3,1] =
al1,1]+al3,1] = a[1,1]+(a[3,1]+a[2,1])
(al1,11+al3,1]1)+al3,1] = al3,1]+al3,1] = a[2,1] =
al1,1]+a[2,1] = a[1,1]1+(al3,1]1+a[3,1])
(al1,2]+al1,1])+al1,1] = a[1,1]+a[1,1] = a[1,1] =
a[1,2]+a[1,1] = a[1,2]+(al1,1]+a[1,1])
(al1,2]+al1,1])+al1,2] = al1,1]+al1,2] = a[1,2] =
al[1,2]+a[1,2] = a[1,2]+(a[1,1]+a[1,2])
(al1,2]+al1,1])+al2,1] = al1l,1]+a[2,1] = a[2,1] =
al[1,2]+a[2,1] = a[1,2]+(al1,1]+al2,1])
(al1,2]+al1,1])+al3,1] = al1,1]+al3,1] = a[3,1] =
al1,2]+a[3,1] = a[1,2]+(al1,1]+al[3,1])
(al1,2]+al1,2])+al1,1] = al1,2]+al1,1] = a[1,1] =
al1,2]+al1,1] = a[1,2]+(al1,2]+al1,1])
(al1,2]+al1,2])+al1,2] = a[1,2]+a[1,2] = a[1,2] =
al1,2]+al1,2] = al[1,2]+(al1,2]+al1,2])
(al1,2]+al1,2])+al2,1] = al1,2]+al[2,1] = a[2,1] =
al[1,2]+al[2,1] = a[1,2]+(al1,2]+al2,1])
(al1,2]+al1,2]1)+al3,1] = al1,2]+al3,1] = al3,1] =
al1,2]+a[3,1] = a[1,2]+(al1,2]+a[3,1])
(al1,2]+a[2,1])+al1,1] = a[2,1]+a[1,1] = a[2,1] =
al[1,2]+a[2,1] = a[1,2]+(a[2,1]+a[1,1])
(al1,2]+al2,1])+al1,2] = al[2,1]+al1,2] = a[2,1] =
al[1,2]+a[2,1] = a[1,2]+(a[2,1]+a[1,2])
(al1,21+al2,1])+al2,1] = al2,1]+a[2,1] = a[2,1] =
al[1,2]+a[2,1] = a[1,2]+(a[2,1]1+a[2,1])
(a[1,2]+a[2,1])+a[3,1] = a[2,1]+a[3,1] = a[3,1] =
al1,2]+a[3,1] = al[1,2]+(al2,1]1+al[3,1])
(al1,2]+a[3,1]1)+al1,1] = al3,1]1+al1,1] = a[3,1] =
al1,2]+a[3,1] = a[1,2]+(al3,1]+al[1,1])
(al1,2]+a[3,1])+a[1,2] = a[3,1]+a[1,2] = a[3,1] =
al[1,2]+a[3,1] = a[1,2]+(al[3,1]+al1,2])
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(al1,2]+al3,1])+a[2,1] = a[3,1]+al[2,1] = a[3,1] =
al1,2]+a[3,1] = a[1,2]+(al3,1]1+al[2,1])
(al1,2]+al3,1]1)+al3,1] = al3,1]+al3,1] = a[2,1] =
al1,2]+a[2,1] = al[1,2]+(al3,1]+a[3,1])
(al[2,1]+al1,1])+al1,1] = a[2,1]+a[1,1] = a[2,1] =
al[2,1]+al1,1] = a[2,1]+(al1,1]+a[1,1])
(al[2,1]+al1,1])+al1,2] = al[2,1]+al1,2] = a[2,1] =
al[2,1]+al1,2] = a[2,1]+(al1,1]+al1,2])
(al2,1]1+al1,1])+al2,1] = al2,1]+a[2,1] = a[2,1] =
al[2,1]+a[2,1] = a[2,1]+(al1,1]1+a[2,1])
(a[2,1]+a[1,1])+a[3,1] = a[2,1]+a[3,1] = a[3,1] =
al[2,1]1+a[3,1] = a[2,1]+(a[1,1]+a[3,1])
(al[2,1]+al1,2])+al1,1] = a[2,1]+al1,1] = a[2,1] =
al2,1]+a[1,1] = a[2,1]+(a[1,2]+a[1,1])
(al2,1]1+al1,2])+al1,2] = al2,1]+a[1,2] = a[2,1] =
al[2,1]+a[1,2] = a[2,1]1+(a[1,2]+al1,2])
(al2,1]+al1,2])+a[2,1] = a[2,1]+a[2,1] = a[2,1] =
al2,1]+a[2,1] = a[2,1]+(al1,2]+a[2,1])
(al2,1]1+al1,2])+al3,1] = al2,1]+al3,1] = al3,1] =
al2,1]+a[3,1] = a[2,1]+(al1,2]+a[3,1])
(a[2,1]+a[2,1])+al1,1] = a[2,1]+a[1,1] = a[2,1] =
al2,1]+al2,1] = a[2,1]+(al[2,1]+a[1,1])
(al2,1]+al2,1])+al1,2] = a[2,1]+a[1,2] = a[2,1] =
al[2,1]+al[2,1] = a[2,1]+(a[2,1]+al1,2])
(al2,1]1+al2,1])+al2,1] = al2,1]+a[2,1] = a[2,1] =
al[2,1]+a[2,1] = a[2,1]1+(al[2,1]1+a[2,1])
(a[2,1]+a[2,1])+a[3,1] = a[2,1]+a[3,1] = a[3,1] =
al[2,1]1+a[3,1] = a[2,1]+(a[2,1]+a[3,1])
(al2,1]+al3,1])+al1,1] = a[3,1]+al1,1] = a[3,1] =
al[2,1]1+a[3,1] = a[2,1]+(a[3,1]+a[1,1])
(al2,1]1+a[3,1])+al1,2] = al3,1]+al1,2] = al3,1] =
al2,1]1+a[3,1] = a[2,1]+(al[3,1]+al1,2])
(a[2,1]+a[3,1])+a[2,1] = a[3,1]+a[2,1] = a[3,1] =
al[2,1]+a[3,1] = a[2,1]1+(al3,1]+a[2,1])
(al2,1]1+a[3,1]1)+al3,1] = al3,1]1+al3,1] = a[2,1] =
al2,1]+a[2,1] = a[2,1]+(al3,1]+a[3,1])
(a[3,1]+al1,1])+al1,1] = a[3,1]+a[1,1] = a[3,1] =
al3,1]+a[1,1] = a[3,1]+(al1,1]+al1,1])
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5 Finitely non-standard models of Robinson arithmetic

(al3,1]+al1,1])+al1,2] = a[3,1]+al1,2] = a[3,1] =
al[3,1]+al1,2] = a[3,1]+(al1,1]+al1,2])
(al3,1]1+al1,1])+al2,1] = al3,1]+a[2,1] = al[3,1] =
al3,1]+a[2,1] = a[3,1]+(al1,1]+a[2,1])
(a[3,1]+a[1,1])+al[3,1] = a[3,1]+a[3,1] = a[2,1] =
al3,1]1+a[3,1] = a[3,1]+(a[1,1]+a[3,1])
(a[3,1]+a[1,2])+a[1,1] = a[3,1]+a[1,1] = a[3,1] =
al3,1]+al1,1] = a[3,1]+(al1,2]+al1,1])
(al3,11+al1,2])+al1,2] = al3,1]+al1,2] = al3,1] =
al3,1]1+a[1,2] = a[3,1]1+(al1,2]+al1,2])
(a[3,1]+a[1,2])+a[2,1] = a[3,1]+a[2,1] = a[3,1] =
al3,1]1+a[2,1] = a[3,1]+(a[1,2]+a[2,1])
(al3,1]+al1,2])+al3,1] = a[3,1]+al3,1] = a[2,1] =
al3,1]+a[3,1] = a[3,1]+(al1,2]+a[3,1])
(al3,11+al2,1])+al1,1] = al3,1]+al1,1] = al[3,1] =
al3,1]1+a[2,1] = a[3,1]1+(a[2,1]+al1,1])
(a[3,1]+a[2,1])+a[1,2] = a[3,1]+a[1,2] = a[3,1] =
al[3,1]+a[2,1] = a[3,1]1+(al2,1]+al[1,2])
(a[3,1]+al2,1])+a[2,1] = a[3,1]+al[2,1] = al3,1] =
al3,1]+a[2,1] = a[3,1]+(al[2,1]+a[2,1])
(a[3,1]+a[2,1])+al[3,1] = a[3,1]+a[3,1] = a[2,1] =
al[3,1]1+a[3,1] = a[3,1]1+(a[2,1]1+a[3,1])
(a[3,1]+a[3,1])+a[1,1] = a[2,1]+a[1,1] = a[2,1] =
al[3,1]+al3,1] = a[3,1]+(a[3,1]+al1,1])
(al3,11+al3,1]1)+al1,2] = al[2,1]+al1,2] = a[2,1] =
al[3,1]1+a[3,1] = a[3,1]1+(a[3,1]+a[1,2])
(a[3,1]+a[3,1])+a[2,1] = a[2,1]+a[2,1] = a[2,1] =
al[3,1]1+a[3,1] = a[3,1]1+(a[3,1]1+a[2,1])
(al3,1]+al3,1])+al3,1] = a[2,1]+a[3,1] = a[3,1] =
al3,1]+a[2,1] = a[3,1]+(al3,1]+a[3,1])

A non-commutative non-associative non-expandable
non-standard part:

A = A[1]

Al1] = {al1,1], al1,2]}
sal1,1] = a[1,2]
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5 Finitely non-standard models of Robinson arithmetic

Sal1,2] = a[1,1]

al1,1]+al1,1] = a[1,2]
al1,2]+al1,1] = al[1,2]
al1,1]+al1,2] = al1,1]
al1,2]+al1,2] = a[1,1]

Models (Q5)7? Yes:

al1,11+8(al1,1]) = al1l,1]1+al1,2] = al1,1] = S(al1,2]) =
S(al1,1]+al1,11)
al1,1]1+8(al1,2]) = al1,1]+al1,1] = a[1,2] = S(al1,1]) =

S(al1,1]+a[1,21)
al1,2]+S(al1,1]) = al[1,2]+al1,2]

S(al1,2]+al1,11)
a[1,2]+S(al1,2]) = al1,2]+al1,1]

S(al1,2]+al1,2]1)

al1,1] = s(al1,2])

al1,2] S(al1,11)

Is expandable? No:

al1,11xal1,1] al1,1] =/((al1,1]+al1,1])+al1,1])
al1,11xal1,1] al1,2] =/((al1,1]+al1,2])+al1,2])
al1,2]xal1,1] al1,1] =/((al1,2]+al1,1])+al1,1])
al1,2]xal1,1] al1,2] =/((a[1,2]+a[1,2])+a[1,2])

Is commutative? No, a counterexample:
al1,1]+al1,2] = al1,1] =/al1,2] = a[1,2]+a[1,1]

Is associative? No, a counterexample:
(al1,1]1+al1,1])+al1,1] = al1,2]+a1,1] = a[1,2] =/al1,1] =
al1,11+al1,2] = al1,1]1+(al1,1]+al1,1])
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