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Definitions, results and proofs in mathematics are (almost) always precisely
formulated. On the other hand, when mathematicians talk or think about
definitions, results and proofs, their formulations are not always precise. For
example, a mathematician might say that a certain proof uses this or that
method, without being precise about what it means for a certain proof to use a
certain method. Or a mathematician might say that a certain proof is a new
proof of an already established result, without being precise about what it means
for two proofs to be distinct from each other.

One category of imprecise statements made in mathematical practice are
statements of the form “In order to prove X one must strengthen one’s induction
hypothesis”. One will find such statements in textbooks, in the literature
on inductive theorem proving, or simply as thoughts entertained by working
mathematicians when they try to prove this or that result by induction.

Hetzl and Wong (2018) have made precise sense of “T proves ∀x.ϕ(x) with
and only with a non-analytic induction hypothesis” for theories T and sentences
∀x.ϕ(x) of first-order arithmetic. They use the terminology “non-analytic”, as
opposed to “strengthened”, because there need not be any sense in which an
induction hypothesis ψ(x) with which T proves ∀x.ϕ(x) is stronger than ϕ(x).

Define f1 : N → N and f2 : N → Q by f1(n) := 1 + 3 + · · · + (2n − 1) and
f2(n) := 1 + 1

4 + 1
9 + · · ·+ 1

(n+1)2 , respectively. We consider the following two
facts.

(F1) f1(n) is a perfect square for all n.

(F2) f2(n) < 2 for all n.

If one tries to prove (F1) or (F2) by “straightforward induction” one gets “stuck”
when trying to prove the induction step. In both cases an easy solution is to
prove a “stronger” fact. (F1) follows from the “stronger” fact: (F1’) f1(n) = n2

for all n. (F2) follows from the “stronger” fact: (F2’) f2(n) < 2− 1
n+1 for all n.

Using a slight reformulation of the notions introduced by Hetzl and Wong,
we show that in a precise sense, in certain circumstances (F1) must be proved
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using a non-analytic induction hypothesis. We also present some results towards
similarly settling whether (F2) must be proved using a non-analytic induction
hypothesis.

The minimal (first-order) language of arithmetic, notation Lmin, is the first-
order language with signature 〈0, 1,+, ·, <〉. A first-order language L is a (first-
order) language of arithmetic if and only if L is an Lmin-expansion.

Let L be a language of arithmetic and let ϕ(x) be an L-formula with at
most one free variable x. The induction instance for ϕ(x) is the L-sentence
IND(ϕ) :≡ ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x+ 1))→ ∀x.ϕ(x).

Let L be a language of arithmetic and let T be an L-theory. Let ϕ(x) and
ψ(x) be L-formulas both with at most one free variable x. Say that ψ witnesses
that T proves ∀x.ϕ(x) with and only with a non-analytic induction hypothesis if
and only if

(1) T, IND(ϕ) 6` ∀x.ϕ(x),

(2) T ` ϕ(0),

(3) T ` ψ(0),

(4) T ` ∀x : ψ(x)→ ψ(x+ 1),

(5) T ` ∀x.ψ(x)→ ∀x.ϕ(x).

The Lmin-theory PA− is “the theory of the non-negative parts of discretely
ordered commutative rings”. Kaye (1991) provides an axiomatization.

To make precise sense of (F1), we expand Lmin to a language L1 by adding
a unary function symbol f . We then define an L1-theory T1:

T1 := PA− ∪ {f(0) = 0,∀x.f(x+ 1) = f(x) + 2 · x+ 1}.

Next we define L1-formulas ϕ1(x) and ψ1(x) such that ∀x.ϕ1(x) and ∀x.ψ1(x)
correspond to (F1) and (F1’), respectively:

ϕ1(x) :≡ ∃y.f(x) = y · y,
ψ1(x) :≡ f(x) = x · x.

Fact. ψ1 witnesses that T1 proves ∀x.ϕ1(x) with and only with a non-analytic
induction hypothesis.

Proof. We need to show (1)–(5) of the definition. (2)–(5) are easy. For (1)
we construct an L1-model satisfying T1 and IND(ϕ1) but not ∀x.ϕ1(x). Z[X]—
the ring of polynomials in the indeterminate X and with integer coefficients—
is a discretely ordered commutative ring. Thus its non-negative part Z[X]+

(consisting of all polynomials with a non-negative leading term) is a model of
PA−. We expand Z[X]+ to an L1-model M by interpreting the function symbol
f on Z[X]+: We let fM be the unique function such that M � T1 and such that
fM (pX−1) = pX2 for all polynomials p > 0 (the details of this construction are
left to the reader). We then have fM (X) = X2 + 2X − 1 which is not a perfect
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square in M so M 6� ∀x.ϕ1(x). Since fM (X − 1) = X2 is a perfect square in M
we then also have M 6� ϕ1(X − 1) → ϕ1(X) and thus we have M � IND(ϕ1).
By construction we have M � T1 so we are done. QED

Since (F2) is a statement involving rationals, a little work is needed to phrase
it as a statement in first-order arithmetic. Multiplying up the denominators and
turning the ellipsis into a recursion, we arrive at the following. Let L2 be Lmin
expanded with the unary function symbols g and h. The L2-theory T2 and the
L2-formulas ϕ2(x) and ψ2(x) are defined by

DEF(g) :≡ g(0) = 1 ∧ ∀x.g(x+ 1) = (x+ 2) · (x+ 2) · g(x) + h(x),

DEF(h) :≡ h(0) = 1 ∧ ∀x.h(x+ 1) = (x+ 2) · (x+ 2) · h(x),
T2 := PA− ∪ {DEF(g),DEF(h)},

ϕ2(x) :≡ g(x) < 2 · h(x),
ψ2(x) :≡ (x+ 1) · g(x) + h(x) ≤ 2 · (x+ 1) · h(x).

To make sense of the above, note that for the unique functions g, h : N → N
satisfying DEF(g) and DEF(h), respectively, we have g

h = f2. ∀x.ϕ2(x) and
∀x.ψ2(x) then corresponds to (F2) and (F2’), respectively.

Conjecture. ψ2 witnesses that T2 proves ∀x.ϕ2(x) with and only with a
non-analytic induction hypothesis.

To settle this conjecture we cannot use the same strategy—cleverly inter-
preting the new function symbols on Z[X]+—as in the proof above. In fact, for
any M � T2 that is the non-negative part of a polynomial ring R[X] we have
gM (p) = hM (p) = 0 for non-constant polynomials p.1

For future work, we would of course like to settle the above conjecture. In the
proof above we used (an expansion of) Z[X]+ as a countermodel. This means
that the proof does not work if we add to T1 any Lmin-sentence that is true in
the standard model but false in Z[X]+. One natural and simple such sentence
is “all numbers are odd or even”, that is σ1 :≡ ∀x∃y : x = y + y ∨ x = y + y + 1.
Thus we would be interested to settle whether the above fact remains true when
σ1 is added to T1. More generally, we would like to see significantly more general
methods for settling such conjectures, as opposed to the method of hand-crafting
countermodels for each particular case.
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1One way to see this is as follows. Let α = g or let α = h. If αM (p) 6= 0 for a non-constant

polynomial p then the degrees of the polynomials αM (p), αM (p − 1), αM (p − 2), . . . would
form an infinitely descending chain of natural numbers. It does not help to let M be the
non-negative part of a ring R[X,X−1] of Laurent polynomials either, for then if M � T2 and
αM (p) 6= 0 for some non-constant polynomial p then for some natural number n, the degree of
αM (p− n) must be less than its order.
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